Nothing
context("Parameter estimation and denoised data (no-spikes+regression)")
test_that("Estimates match the given seed (no-spikes+regression)", {
# Data example
set.seed(13)
Data <- makeExampleBASiCS_Data(WithSpikes = FALSE, WithBatch = TRUE)
sce <- SingleCellExperiment::SingleCellExperiment(
assays = list(counts = counts(Data)),
colData = data.frame(
BatchInfo = SingleCellExperiment::colData(Data)$BatchInfo
)
)
# Fixing starting values
k <- 12
PriorParam <- BASiCS_PriorParam(Data, k = k)
# Running the sampler
set.seed(14)
Chain <- run_MCMC(
Data,
N = 1000,
Thin = 10,
Burn = 500,
PriorParam = PriorParam,
PrintProgress = FALSE,
WithSpikes = FALSE,
Regression = TRUE
)
set.seed(14)
ChainSCE <- run_MCMC(
sce,
N = 1000,
Thin = 10,
Burn = 500,
PriorParam = PriorParam,
PrintProgress = FALSE,
WithSpikes = FALSE,
Regression = TRUE
)
# Calculating a posterior summary
PostSummary <- Summary(Chain)
PostSummarySCE <- Summary(ChainSCE)
# Checking parameter names
ParamNames <- c("mu", "delta", "s", "nu", "theta",
"beta", "sigma2", "epsilon", "RefFreq", "RBFLocations")
ParamNames1 <- c("mu", "delta", "s", "nu", "theta",
"beta", "sigma2", "epsilon")
expect_equal(names(Chain@parameters), ParamNames)
expect_equal(names(PostSummary@parameters), ParamNames1)
# Check if parameter estimates match for the first 5 genes and cells
Mu <- c(13.927, 17.978, 5.653, 12.183, 37.181)
MuObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "mu")[1:5, 1], 3))
MuObsSCE <- as.vector(round(displaySummaryBASiCS(
PostSummarySCE,
"mu"
)[1:5, 1], 3))
expect_equal(MuObs, Mu, tolerance = 1, scale = 1)
expect_equal(MuObsSCE, Mu, tolerance = 1, scale = 1)
Delta <- c(1.487, 1.264, 1.998, 1.638, 0.472)
DeltaObs <- as.vector(round(displaySummaryBASiCS(
PostSummary,
"delta"
)[1:5, 1], 3))
DeltaObsSCE <- as.vector(round(displaySummaryBASiCS(
PostSummarySCE,
"delta"
)[1:5, 1], 3))
expect_equal(DeltaObs, Delta, tolerance = 1, scale = 1)
expect_equal(DeltaObsSCE, Delta, tolerance = 1, scale = 1)
S <- c(1.421, 0.916, 1.967, 0.812, 1.111)
SObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "s")[1:5, 1], 3))
SObsSCE <- as.vector(round(displaySummaryBASiCS(
PostSummarySCE,
"s"
)[1:5, 1], 3))
expect_equal(SObs, S, tolerance = 1, scale = 1)
expect_equal(SObsSCE, S, tolerance = 1, scale = 1)
Theta <- c(0.282, 0.143)
ThetaObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "theta")[, 1], 3))
ThetaObsSCE <- as.vector(round(displaySummaryBASiCS(
PostSummarySCE,
"theta"
)[, 1], 3))
expect_equal(ThetaObs, Theta, tolerance = 1, scale = 1)
expect_equal(ThetaObsSCE, Theta, tolerance = 1, scale = 1)
Beta <- c(0.302, -0.309, 0.303, 0.267, 0.063)
BetaObs <- as.vector(round(displaySummaryBASiCS(PostSummary, "beta")[1:5, 1], 3))
BetaObsSCE <- as.vector(round(displaySummaryBASiCS(
PostSummarySCE,
"beta"
)[1:5, 1], 3))
expect_equal(BetaObs, Beta, tolerance = 1, scale = 1)
expect_equal(BetaObsSCE, Beta, tolerance = 1, scale = 1)
Sigma2 <- 0.232
Sigma2Obs <- round(displaySummaryBASiCS(PostSummary, "sigma2")[1], 3)
Sigma2ObsSCE <- round(displaySummaryBASiCS(PostSummarySCE, "sigma2")[1], 3)
expect_equal(Sigma2Obs, Sigma2, tolerance = 1, scale = 1)
expect_equal(Sigma2ObsSCE, Sigma2, tolerance = 1, scale = 1)
# Obtaining denoised counts
DC <- BASiCS_DenoisedCounts(Data, Chain)
DCSCE <- BASiCS_DenoisedCounts(sce, ChainSCE)
# Checks for an arbitrary set of genes / cells
DCcheck0 <- c(4.527, 23.203, 7.357, 0.000, 19.241)
DCcheck <- as.vector(round(DC[1:5, 1], 3))
DCSCEcheck <- as.vector(round(DCSCE[1:5, 1], 3))
expect_equal(DCcheck, DCcheck0, tolerance = 1, scale = 1)
expect_equal(DCSCEcheck, DCcheck0, tolerance = 1, scale = 1)
# Obtaining denoised rates
DR <- BASiCS_DenoisedRates(Data, Chain)
DRSCE <- BASiCS_DenoisedRates(sce, ChainSCE)
# Checks for an arbitrary set of genes / cells
DRcheck0 <- c(11.836, 19.464, 31.474, 32.466, 7.247)
DRcheck <- as.vector(round(DR[10, 1:5], 3))
DRSCEcheck <- as.vector(round(DRSCE[10, 1:5], 3))
expect_equal(DRcheck, DRcheck0, tolerance = 1, scale = 1)
expect_equal(DRSCEcheck, DRcheck0, tolerance = 1, scale = 1)
})
test_that("Chain creation works when regression, no spikes, and StoreAdapt=TRUE", {
# Data example
set.seed(14)
Data <- makeExampleBASiCS_Data(WithSpikes = FALSE, WithBatch = TRUE)
# Fixing starting values
n <- ncol(Data)
PriorParam <- BASiCS_PriorParam(Data, k = 12)
set.seed(2018)
Start <- BASiCS:::.BASiCS_MCMC_Start(
Data,
PriorParam,
Regression = TRUE,
WithSpikes = FALSE
)
# Running the sampler
set.seed(42)
Chain <- run_MCMC(
Data,
N = 50,
Thin = 10,
Burn = 10,
PrintProgress = FALSE,
WithSpikes = FALSE,
Regression = TRUE,
StoreAdapt = TRUE,
Start = Start,
PriorParam = PriorParam
)
expect_s4_class(Chain, "BASiCS_Chain")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.