Description Usage Arguments Value Author(s) Examples
Prediction by generalized regression models with lasso or elastic net regularization.
1 2 3 4 5 6 7 | baseGLMnet(
trainData,
testData,
predMode = c("classification", "probability", "regression"),
paramlist = list(family = "binomial", alpha = 0.5, typeMeasure = "mse", typePred =
"class")
)
|
trainData |
The input training dataset. The first column is named the 'label'. |
testData |
The input test dataset. The first column is named the 'label'. |
predMode |
The prediction mode. Available options are c('classification', 'probability', 'regression'). |
paramlist |
A set of model parameters defined in an R list object. The valid option: list(family, alpha, typeMeasure, typePred).
|
The predicted output for the test data.
Junfang Chen
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
## Load data
methylfile <- system.file('extdata', 'methylData.rds', package='BioMM')
methylData <- readRDS(methylfile)
dataY <- methylData[,1]
## select a subset of genome-wide methylation data at random
methylSub <- data.frame(label=dataY, methylData[,c(2:2001)])
trainIndex <- sample(nrow(methylSub), 16)
trainData = methylSub[trainIndex,]
testData = methylSub[-trainIndex,]
library(glmnet)
## classification
predY <- baseGLMnet(trainData, testData,
predMode='classification',
paramlist=list(family='binomial', alpha=0.5,
typeMeasure='mse', typePred='class'))
testY <- testData[,1]
accuracy <- classifiACC(dataY=testY, predY=predY)
print(accuracy)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.