Description Usage Arguments Details Value Author(s) Examples
Compute the evaluation metrics in the classification setting: area under curve (AUC), the area under the Precision-Recall curve, classification accuracy (ACC) and the pseudo R square (R2).
1 | getMetrics(dataY, predY)
|
dataY |
The observed outcome. |
predY |
The predicted outcome. |
If all samples are predicted into one class, then R2 is 0.
A set of metrics for model evaluation: AUC, AUCPR, ACC and R2.
Junfang Chen
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
## Load data
methylfile <- system.file('extdata', 'methylData.rds', package='BioMM')
methylData <- readRDS(methylfile)
dataY <- methylData[,1]
methylSub <- data.frame(label=dataY, methylData[,c(2:1001)])
library(ranger)
library(precrec)
library(rms)
library(BiocParallel)
param1 <- MulticoreParam(workers = 1)
param2 <- MulticoreParam(workers = 10)
predY <- predByCV(methylSub, repeats=1, nfolds=10,
FSmethod=NULL, cutP=0.1,
fdr=NULL, FScore=param1,
classifier='randForest',
predMode='classification',
paramlist=list(ntree=300, nthreads=20),
innerCore=param2)
metrics <- getMetrics(dataY=dataY, predY=predY)
print(metrics)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.