Nothing
# ------------------------------------------------------------------------------
# Graph features
# ------------------------------------------------------------------------------
# ------------------------------------------------------------------------------
# Helper functions
# ------------------------------------------------------------------------------
clusterCoef <- function(A) {
s <- sum(A)
results <- c()
n <- nrow(A)
d <- (n-1)*(n-2)
results<-apply(A,1,function(x) (s - 2*sum(x))/d)
return(results)
}
# Inverting Matrix Weights
invWeigthts<-function(A){
A[which(A > 0)] <- 1/A[which(A > 0)]
return(A)
}
# Density functions of the degrees of two graphs
#
# 'degreeDensities' estimates the density functions of the degrees for two
# graphs at the same coordinates
# @param G1 an igraph graph object
# @param G2 an igraph graph object
# @param npoints number of points used in density function estimation
# @param options a list containing parameters. It can be set to either
# \code{list(bandwidth="Sturges")} or \code{list(bandwidth="Silverman")}.
# @return a list containing the components, f1 (density estimate of the
# graph G1), and f2 (density estimate of the graph G2). Each component is
# a list, where the first element is the vector 'x' of 'npoints' coordinates
# of the points where the density function is estimated, and the second is
# a vector 'y' of the estimated density values.
# @examples G1<-erdos.renyi.game(30,0.6)
# G2<-barabasi.game(30,power = 1)
# d<-degreeDensities(G1, G2, npoints=1024, options=list(bandwidth="Sturges"))
# par(mfrow=c(1,2))
# plot(d$f1$x,d$f1$y,main="Erdos-Renyi\n Degree distribution",
# xlab="Degree",ylab="Frequency")
# plot(d$f2$x,d$f2$y,main="Barabasi\n Degree distribution",
# xlab="Degree",ylab="Frequency")
degreeDensities <- function(G1, G2, npoints=1024, options=list(bandwidth="Sturges")) {
n1 <- vcount(G1)
n2 <- vcount(G2)
e1 <- graph.strength(G1)
e2 <- graph.strength(G2)
from <- min(e1, e2)
to <- max(e1, e2)
f1 <- gaussianDensity(e1, from=from, to=to, bandwidth=options$bandwidth, npoints=npoints)
f2 <- gaussianDensity(e2, from=from, to=to, bandwidth=options$bandwidth, npoints=npoints)
if (sum(is.na(f1)) > 0 || sum(is.na(f2)) > 0)
return(NA)
return(list("f1"=f1, "f2"=f2))
}
#' Density functions of the degrees of n graphs
#'
#' 'nDegreeDensities' estimates the density functions of the degrees for n
#' graphs at the same coordinates
#' @param Gs a list of n igraph graphs objects
#' @param npoints number of points used in density function estimation
#' @param bandwidth a parameters. It can be set to either "Sturges" or "Silverman".
#' @param from the lower value used to build the distribution
#' @param to the higher value used to build the distribution
#' @return a list containing the components 'x' and 'densities'.
#' The first element is the vector 'x' of 'npoints' coordinates
#' of the points where the density function i estimated, and the second is
#' a vector 'y' of the estimated density values.
#' @examples G<-list()
#' G[[1]]<-erdos.renyi.game(30,0.6)
#' G[[2]]<-barabasi.game(30,power = 1)
#' G[[3]]<-watts.strogatz.game(2,30,2,0.3)
#' d<-nDegreeDensities(G, npoints=1024, bandwidth="Sturges")
#' par(mfrow=c(1,3))
#' plot(d$x,d$densities[,1],main="Erdos-Renyi\n Degree distribution",
#' xlab="Degree",ylab="Frequency")
#' plot(d$x,d$densities[,2],main="Barabasi\n Degree distribution",
#' xlab="Degree",ylab="Frequency")
#' plot(d$x,d$densities[,3],main="Watts-Strogatz\n Degree distribution",
#' xlab="Degree",ylab="Frequency")
#' @seealso \code{graph.strength}
#' @seealso \code{density}
#' @import igraph
#' @export
nDegreeDensities <- function(Gs, npoints=1024, bandwidth="Sturges",from=NULL,to=NULL) {
e<-lapply(Gs,graph.strength)
densities <- matrix(NA, npoints, length(Gs))
if(is.null(from) || is.null(to)){
from <- min(unlist(e))
to <- max(unlist(e))
}
for(i in seq_len(length(Gs))){
f <- gaussianDensity(e[[i]], from=from, to=to, bandwidth=bandwidth, npoints=npoints)
if (any(is.na(f))) return(NA)
densities[,i]<-f$y
x<-f$x
}
if (sum(is.na(x)) > 0 || sum(is.na(densities)) > 0)
return(NA)
return(list("x"=x, "densities"=densities))
}
#' Kullback-Liebler divergence among the density functions of the degrees of
#' two or more graphs
#'
#' 'KLdegree' computes the Kullback-Liebler divergence among the density
#' functions of the degrees of two or more graphs
#'
#' @param f a list containing the components 'x' and 'densities'.
#' The first element is the vector 'x' of 'npoints' coordinates
#' of the points where the density function i estimated, and the second is
#' a vector 'y' of the estimated density values.
#' @return returns a list containing the components 'theta' and 'partial'.
#' 'theta' is a value representaing the Kullback-Liebler divergence among the corresponding distributions.
#' 'partial' is a vector of KL divergences between each network distribuiton and the average degree distribution.
#' @examples G<-list()
#' G[[1]]<-erdos.renyi.game(30,0.6)
#' G[[2]]<-barabasi.game(30,power = 1)
#' G[[3]]<-watts.strogatz.game(2,30,2,0.3)
#' f<-nDegreeDensities(G, npoints=1024, bandwidth="Sturges")
#' KLdegree(f)
#' @seealso \code{graph.strength}
#' @seealso \code{density}
#' @import igraph
#' @export
KLdegree<-function(f){
if(any(is.na(f))){
cat('Empty graph')
return(list("measure"=NA, "p.value"=NA,"Partial"=NA))
}
meanDensity <- list("x"=f$x, "y"=rowMeans(f$densities))
partial <- vector(length=ncol(f$densities))
for (j in seq_len(ncol(f$densities))) {
f1 <- list("x"=f$x, "y"=f$densities[,j])
partial[j] <- KL(f1, meanDensity)/ncol(f$densities)
}
return(list(theta=mean(partial),Partial=partial))
}
# Jensen-Shannon divergence between the density functions of the degrees of
# two graphs
#
# 'JSdegree' computes the Jensen-Shannon divergence between the density
# functions of the degrees of two graphs
#
# @param G1 an igraph graph object
# @param G2 an igraph graph object
# @param options a list containing parameters. It can be set to either
# \code{list(bandwidth="Sturges")} or \code{list(bandwidth="Silverman")}.
# @return a list containing the components, f1 (density estimate of the
# graph G1), and f2 (density estimate of the graph G2). Each component is
# a list, where the first element is the vector 'x' of 'npoints' coordinates
# of the points where the density function i estimated, and the second is
# a vector 'y' of the estimated density values.
JSdegree <- function(G1, G2, options=list(bandwidth="Sturges")) {
f <- degreeDensities(G1, G2, options=options)
if (sum(is.na(f)) > 0)
return(NA)
f1 <- f$f1
f2 <- f$f2
fm <- f1
fm$y <- (f1$y + f2$y)/2
return((KL(f1, fm) + KL(f2, fm))/2)
}
# Returns the spectral density for a given adjacency matrix A
spectralDensity <- function(A, bandwidth="Sturges", npoints=1024) {
eigenvalues <- (as.numeric(eigen(A, only.values = TRUE)$values)/sqrt(nrow(A)))
return(gaussianDensity(eigenvalues, bandwidth=bandwidth, npoints=npoints))
}
# Returns the spectral densities for given adjacency matrices A1 and A2 at the
# same points
spectralDensities <- function(A1, A2, bandwidth="Sturges",
npoints=1024) {
n1 <- nrow(A1)
n2 <- nrow(A2)
e1 <- (as.numeric(eigen(A1, only.values = TRUE)$values)/sqrt(n1))
e2 <- (as.numeric(eigen(A2, only.values = TRUE)$values)/sqrt(n2))
from <- min(e1, e2)
to <- max(e1, e2)
f1 <- gaussianDensity(e1, from=from, to=to, bandwidth=bandwidth, npoints=npoints)
f2 <- gaussianDensity(e2, from=from, to=to, bandwidth=bandwidth, npoints=npoints)
if (sum(is.na(f1)) > 0 || sum(is.na(f2)) > 0)
return(NA)
return(list("f1"=f1, "f2"=f2))
}
#' Spectral Density functions of n graphs
#'
#' Returns the spectral densities for a list of adjacency matrices at the
#' same points
#' @param A a list of adjacency matrices
#' @param from the lower value used to build the distribution
#' @param to the higher value used to build the distribution
#' @param bandwidth a parameters. It can be set to either "Sturges" or "Silverman".
#' @return a list containing the components 'x' and 'densities'.
#' The first element is the vector 'x' of 'npoints' coordinates
#' of the points where the density function i estimated, and the second is
#' a vector 'y' of the estimated density values.
#' @examples A<-list()
#' A[[1]]<-as.matrix(as_adj(erdos.renyi.game(30,0.6,directed = FALSE)))
#' A[[2]]<-as.matrix(as_adj(barabasi.game(30,power = 1,directed = FALSE)))
#' A[[3]]<-as.matrix(as_adj(watts.strogatz.game(1,30,2,0.3)))
#' d<-nSpectralDensities(A, bandwidth="Sturges")
#' par(mfrow=c(1,3))
#' plot(d$x,d$densities[,1],main="Erdos-Renyi\n Spectral distribution",
#' xlab="Eigenvalue",ylab="Frequency")
#' plot(d$x,d$densities[,2],main="Barabasi\n Spectral distribution",
#' xlab="Eigenvalue",ylab="Frequency")
#' plot(d$x,d$densities[,3],main="Watts-Strogatz\n Spectral distribution",
#' xlab="Eigenvalue",ylab="Frequency")
#' @seealso \code{KLdegree}
#' @seealso \code{density}
#' @import igraph
#' @export
nSpectralDensities <- function (A, from=NULL, to=NULL, bandwidth="Silverman") {
npoints <- 1024
ngraphs <- length(A)
n <- ncol(A[[1]])
spectra <- matrix(NA, n, ngraphs)
for (i in seq_len(ngraphs)) {
Adj <- A[[i]]
eigenvalues <- (as.numeric(eigen(Adj, only.values = TRUE)$values)/
sqrt(nrow(Adj)))
spectra[,i] <- eigenvalues
}
densities <- matrix(NA, npoints, ngraphs)
minimum <- min(spectra)
maximum <- max(spectra)
if (!is.null(from) && !is.null(to)) {
minimum <- from
maximum <- to
}
for (i in seq_len(ngraphs)) {
f <- gaussianDensity(spectra[,i], bandwidth=bandwidth,
from=minimum, to=maximum,
npoints=npoints)
densities[,i] <- f$y
x <- f$x
}
return(list("x"=x, "densities"=densities))
}
#' Kullback-Liebler divergence among the spectral density functions of
#' two or more graphs
#'
#' 'KLspectrum' computes the Kullback-Liebler divergence among the spectral density
#' functions of two or more graphs
#'
#' @param f a list containing the components 'x' and 'densities'.
#' The first element is the vector 'x' of 'npoints' coordinates
#' of the points where the density function i estimated, and the second is
#' a vector 'y' of the estimated density values.
#' @return returns a list containing the components 'theta' and 'partial'.
#' 'theta' is a value representaing the Kullback-Liebler divergence among the corresponding distributions.
#' 'partial' is a vector of KL divergences between each network distribuiton and the average spectral distribution.
#' @examples A<-list()
#' A[[1]]<-as.matrix(as_adj(erdos.renyi.game(30,0.6,directed = FALSE)))
#' A[[2]]<-as.matrix(as_adj(barabasi.game(30,power = 1,directed = FALSE)))
#' A[[3]]<-as.matrix(as_adj(watts.strogatz.game(1,30,2,0.3)))
#' f<-nSpectralDensities(A, bandwidth="Sturges")
#' KLspectrum(f)
#' @seealso \code{graph.strength}
#' @seealso \code{density}
#' @import igraph
#' @export
KLspectrum<-function(f){
meanDensity <- list("x"=f$x, "y"=rowMeans(f$densities))
partial <- vector(length = ncol(f$densities))
for (j in seq_len(ncol(f$densities))) {
f1 <- list("x"=f$x, "y"=f$densities[,j])
partial[j] <- KL(f1, meanDensity)/ncol(f$densities)
}
return(list(theta=mean(partial),Partial=partial))
}
# Given two adjacency matrices, returns the Jensen-Shannon divergence between
# the corresponding graphs
#
# 'JSspectrum' computes the Jensen-Shannon divergence between the spectral density
# functions of two graphs
#
# @param G1 an adjacency matrix
# @param G2 an adjacency matrix
# @param bandwidth a parameters. It can be set to either "Sturges" or "Silverman".
# @return returns a value representaing the Jensen-Shannon divergence between the corresponding graphs
JSspectrum <- function(A1, A2, bandwidth="Sturges") {
f <- spectralDensities(A1, A2, bandwidth=bandwidth)
if (sum(is.na(f)) > 0)
return(NA)
f1 <- f$f1
f2 <- f$f2
fm <- f1
fm$y <- (f1$y + f2$y)/2
return((KL(f1, fm) + KL(f2, fm))/2)
}
# Given two spectral densities, returns the Jensen-Shannon divergence between
# the corresponding graphs
#
# 'JS' computes the Jensen-Shannon divergence between the spectral density
# functions of two graphs
#
JS <- function(f1, f2) {
fm <- f1
fm$y <- (f1$y + f2$y)/2
return((KL(f1, fm) + KL(f2, fm))/2)
}
# Returns the absolute difference of the adjacency matrix A1 and A2 spectral
# entropies
absDiffSpectralEntropy <- function(A1, A2, bandwidth="Sturges") {
fs <- spectralDensities(A1, A2, bandwidth=bandwidth)
if (sum(is.na(fs)) > 0)
return(NA)
H1 <- entropy(fs$f1)
H2 <- entropy(fs$f2)
return(abs(H1 - H2))
}
# ------------------------------------------------------------------------------
# Node scores
# ------------------------------------------------------------------------------
#' Node scores
#' @description Node score (degree, betweenness, closenness, eigenvector centralities or clustering coefficient) for each network analysed.
#' @param expr Matrix of variables (columns) vs samples (rows).
#' @param labels a vector in which a position indicates the phenotype of the corresponding sample or state.
#' @param adjacencyMatrix a function that returns the adjacency matrix for a given variables values matrix.
#' @return a list of vector containing the node scores (degree, betweenness, closenness, eigenvector centralities or clustering coefficient) of each network.
#' @examples
#' set.seed(1)
#' expr <- as.data.frame(matrix(rnorm(120),40,30))
#' labels<-data.frame(code=rep(0:3,10),names=rep(c("A","B","C","D"),10))
#' adjacencyMatrix1 <- adjacencyMatrix(method="spearman", association="pvalue",
#' threshold="fdr", thr.value=0.05, weighted=FALSE)
#' @name nodeScores
#' @rdname nodeScores
#' @examples
#'
#' # Degree centrality
#' degreeCentrality(expr, labels, adjacencyMatrix1)
#' @export
degreeCentrality <- function(expr, labels, adjacencyMatrix) {
A<-list()
v<-vector(length=length(unique(labels$code)))
for (a in seq_len(length(unique(labels$code)))){
A[[a]]<-adjacencyMatrix(expr[labels$code==unique(labels$code)[a],])
v[a]<-(sum(!(A[[1]] %in% c(1,0))) != 0)
}
A<-lapply(A,abs)
weighted <- NULL
if(any(v)) weighted <- TRUE
G<-lapply(A,graph.adjacency, mode="undirected", weighted=weighted)
result <- lapply(G, graph.strength)
names(result)<-unique(labels$names)
return(result)
}
#' @rdname nodeScores
#' @examples
#'
#' # Betweenness Centrality
#' betweennessCentrality(expr, labels, adjacencyMatrix1)
#' @export
betweennessCentrality <- function(expr, labels, adjacencyMatrix) {
A<-list()
v<-vector(length=length(unique(labels$code)))
for (a in seq_len(length(unique(labels$code)))){
A[[a]]<-adjacencyMatrix(expr[labels$code==unique(labels$code)[a],])
v[a]<-(sum(!(A[[1]] %in% c(1,0))) != 0)
}
A<-lapply(A,abs)
weighted <- NULL
if(any(v)) weighted <- TRUE
if (!is.null(weighted)) A<-lapply(A,invWeigthts)
G<-lapply(A,graph.adjacency, mode="undirected", weighted=weighted)
result <- lapply(G, betweenness)
names(result)<-unique(labels$names)
return(result)
}
#' @rdname nodeScores
#' @examples
#'
#' # Edges Betweenness Centrality
#' betweennessEdgesCentrality(expr, labels, adjacencyMatrix1)
#' @export
betweennessEdgesCentrality <- function(expr, labels, adjacencyMatrix) {
A<-list()
v<-vector(length=length(unique(labels$code)))
for (a in seq_len(length(unique(labels$code)))){
A[[a]]<-adjacencyMatrix(expr[labels$code==unique(labels$code)[a],])
v[a]<-(sum(!(A[[1]] %in% c(1,0))) != 0)
}
A<-lapply(A,abs)
weighted <- NULL
if(any(v)) weighted <- TRUE
if (!is.null(weighted)) A<-lapply(A,invWeigthts)
G<-lapply(A,graph.adjacency, mode="undirected", weighted=weighted)
result<-lapply(G, function(x){
M<-as.matrix(as_adj(x,edges = T,type = "lower"))
M[M!=0]<-edge_betweenness(x, directed=FALSE)
return(as.vector(M))
})# guarda a centralidade
s<-do.call(rbind,result)
noEdges<-c(which(apply(s,2,function (x) all(x==0))))
res<-lapply(result, function(x) x[-c(noEdges)])
names(res)<-unique(labels$names)
return(res)
}
#' @rdname nodeScores
#' @examples
#'
#' # Closenness Caentrality
#' closenessCentrality(expr, labels, adjacencyMatrix1)
#' @export
closenessCentrality <- function(expr, labels, adjacencyMatrix) {
A<-list()
v<-vector(length=length(unique(labels$code)))
for (a in seq_len(length(unique(labels$code)))){
A[[a]]<-adjacencyMatrix(expr[labels$code==unique(labels$code)[a],])
v[a]<-(sum(!(A[[1]] %in% c(1,0))) != 0)
}
A<-lapply(A,abs)
weighted <- NULL
if(any(v)) weighted <- TRUE
if (!is.null(weighted)) A<-lapply(A,invWeigthts)
G<-lapply(A,graph.adjacency, mode="undirected", weighted=weighted)
result <- lapply(G, closeness)
names(result)<-unique(labels$names)
return(result)
}
#' @rdname nodeScores
#' @examples
#'
#' # Eigenvector centrality
#' eigenvectorCentrality(expr, labels, adjacencyMatrix1)
#' @export
eigenvectorCentrality <- function(expr, labels, adjacencyMatrix) {
A<-list()
v<-vector(length=length(unique(labels$code)))
for (a in seq_len(length(unique(labels$code)))){
A[[a]]<-adjacencyMatrix(expr[labels$code==unique(labels$code)[a],])
v[a]<-(sum(!(A[[1]] %in% c(1,0))) != 0)
}
A<-lapply(A,abs)
weighted <- NULL
if(any(v)) weighted <- TRUE
G<-lapply(A,graph.adjacency, mode="undirected", weighted=weighted)
result <- lapply(G, function(x) evcent(x)$vector)
names(result)<-unique(labels$names)
return(result)
}
#' @rdname nodeScores
#' @examples
#'
#' # Clustering coefficient
#' clusteringCoefficient(expr, labels, adjacencyMatrix1)
#' @export
clusteringCoefficient <- function(expr, labels, adjacencyMatrix) {
A<-list()
v<-vector(length=length(unique(labels$code)))
for (a in seq_len(length(unique(labels$code)))){
A[[a]]<-adjacencyMatrix(expr[labels$code==unique(labels$code)[a],])
v[a]<-(sum(!(A[[1]] %in% c(1,0))) != 0)
}
A<-lapply(A,abs)
weighted <- NULL
if(any(v)) weighted <- TRUE
if (!is.null(weighted)) result <- lapply(A, clusterCoef)
else {
G<-lapply(A,graph.adjacency, mode="undirected", weighted=weighted)
result <- lapply(G, transitivity, type="local", isolates="zero")
}
names(result)<-unique(labels$names)
return(result)
}
# ------------------------------------------------------------------------------
# Network features
# ------------------------------------------------------------------------------
#' Network features
#' @name networkFeature
#' @description Network feature average nodes scores (degree, betweenness, closenness, eigenvector centralities or clustering coefficient) or spectral entropies for each network analysed.
#' @param expr Matrix of variables (columns) vs samples (rows)
#' @param labels a vector in which a position indicates the phenotype of the corresponding sample or state
#' @param adjacencyMatrix a function that returns the adjacency matrix for a given variables values matrix
#' @param options a list containing parameters. Used only in spectralEntropies function. It can be set to either \code{list(bandwidth="Sturges")} or \code{list(bandwidth="Silverman")}.
#' @return a list of values containing the spectral entropie or average node score of each network.
#' @examples set.seed(1)
#' expr <- as.data.frame(matrix(rnorm(120),40,30))
#' labels<-data.frame(code=rep(0:3,10),names=rep(c("A","B","C","D"),10))
#' adjacencyMatrix1 <- adjacencyMatrix(method="spearman", association="pvalue",
#' threshold="fdr", thr.value=0.05, weighted=FALSE)
#' @rdname networkFeature
#' @examples
#'
#' # Average degree centrality
#' averageDegreeCentrality(expr, labels, adjacencyMatrix1)
#' @export
averageDegreeCentrality <- function(expr, labels, adjacencyMatrix, options=NULL) {
result <- degreeCentrality(expr, labels, adjacencyMatrix)
return(lapply(result,mean))
}
#' @rdname networkFeature
#' @examples
#'
#' # Average betweenness centrality
#' averageBetweennessCentrality(expr, labels, adjacencyMatrix1)
#' @export
averageBetweennessCentrality <- function(expr, labels, adjacencyMatrix, options=NULL) {
result <- betweennessCentrality(expr, labels, adjacencyMatrix)
return(lapply(result,mean))
}
#' @rdname networkFeature
#' @examples
#'
#' # Average betweenness centrality
#' averageBetweennessCentrality(expr, labels, adjacencyMatrix1)
#' @export
averageBetweennessEdgesCentrality <- function(expr, labels, adjacencyMatrix, options=NULL) {
result <- betweennessEdgesCentrality(expr, labels, adjacencyMatrix)
return(lapply(result,mean))
}
#' @rdname networkFeature
#' @examples
#'
#' # Average closeness centrality
#' averageClosenessCentrality(expr, labels, adjacencyMatrix1)
#' @export
averageClosenessCentrality <- function(expr, labels, adjacencyMatrix, options=NULL) {
result <- closenessCentrality(expr, labels, adjacencyMatrix)
return(lapply(result,mean))
}
#' @rdname networkFeature
#' @examples
#'
#' # Average eigenvector centrality
#' averageEigenvectorCentrality(expr, labels, adjacencyMatrix1)
#' @export
averageEigenvectorCentrality <- function(expr, labels, adjacencyMatrix, options=NULL) {
result <- eigenvectorCentrality(expr, labels, adjacencyMatrix)
return(lapply(result,mean))
}
#' @rdname networkFeature
#' @examples
#'
#' # Average clustering coefficient
#' averageClusteringCoefficient(expr, labels, adjacencyMatrix1)
#' @export
averageClusteringCoefficient <- function(expr, labels, adjacencyMatrix, options=NULL) {
result <- clusteringCoefficient(expr, labels, adjacencyMatrix)
return(lapply(result,mean))
}
#' @rdname networkFeature
#' @examples
#'
#' # Average shortest path
#' averageShortestPath(expr, labels, adjacencyMatrix1)
#' @export
averageShortestPath <- function(expr, labels, adjacencyMatrix, options=NULL) {
A<-list()
v<-vector(length=length(unique(labels$code)))
for (a in seq_len(length(unique(labels$code)))){
A[[a]]<-adjacencyMatrix(expr[labels$code==unique(labels$code)[a],])
v[a]<-(sum(!(A[[1]] %in% c(1,0))) != 0)
}
A<-lapply(A,abs)
weighted <- NULL
if(any(v)) weighted <- TRUE
if (!is.null(weighted)) A<-lapply(A,invWeigthts)
G<-lapply(A,graph.adjacency, mode="undirected", weighted=weighted)
result <- lapply(G, average.path.length)
names(result)<-unique(labels$names)
return(result)
}
# Returns the spectral entropy for a given adjacency matrix A
spectralEntropy <- function(A, bandwidth="Sturges") {
f <- spectralDensity(A, bandwidth=bandwidth)
if (sum(is.na(f)) > 0)
return(NA)
y <- f$y
n <- length(y)
i <- which(y != 0)
y[i] <- y[i]*log(y[i])
return(-trapezoidSum(f$x, y))
}
#' @rdname networkFeature
#' @return spectralEntropies. A list of values containing the spectral entropy of each network.
#' @examples
#'
#' # Spectral entropies
#' spectralEntropies(expr, labels, adjacencyMatrix1, options=list(bandwidth="Sturges"))
#' @export
spectralEntropies <- function(expr, labels, adjacencyMatrix, options=list(bandwidth="Sturges")) {
A<-list()
v<-vector(length=length(unique(labels$code)))
for (a in seq_len(length(unique(labels$code)))){
A[[a]]<-adjacencyMatrix(expr[labels$code==unique(labels$code)[a],])
}
A<-lapply(A,abs)
fs<- nSpectralDensities(A,bandwidth=options$bandwidth)
if (sum(is.na(fs)) > 0)
return(NA)
entropies<-list()
for(j in seq_len(length(A))){ # uma entropia para cada grafo
entropies[[j]]<-entropy(list("x"=fs$x, "y"=fs$densities[,j]))
}
names(entropies)<-unique(labels$names)
return(entropies)
}
# ------------------------------------------------------------------------------
# Test of equality between network properties
# ------------------------------------------------------------------------------
resInt <- function(A,expr,weighted,fun){
n <- ncol(expr)# numero de genes
A<-lapply(A,abs)
G<-lapply(A,graph.adjacency, mode="undirected", weighted=weighted)# guarda a rede
s<-lapply(G, fun)# guarda a centralidade
s<-do.call(rbind,s) # "s" é uma matrix onde serão guardados os vetores dos betweenness e um vetor de média deles
s<-rbind(s,apply(s,MARGIN=2,FUN=mean))
partial<-apply(s[-dim(s)[1],],1, function(x) dist(rbind(x,s[dim(s)[1],]))/sqrt(dim(s)[2]))# calcula a distancia euclidiana entre cada vetor de betweenness e o vetor medio
return(c(mean(partial),partial)) # A estatítica é a soma das distancias
}
edgesResInt <- function(A,expr,weighted,fun){
A<-lapply(A,abs)
G<-lapply(A,graph.adjacency, mode="undirected", weighted=weighted)# guarda a rede
s<-lapply(G, function(x){
M<-as.matrix(as_adj(x,edges = T,type = "lower"))
M[M!=0]<-fun(x, directed=FALSE)
return(as.vector(M))
})# guarda a centralidade
s<-do.call(rbind,s) # "s" é uma matrix onde serão guardados os vetores dos betweenness e um vetor de média deles
s<-rbind(s,apply(s,MARGIN=2,FUN=mean))
partial<-apply(s[-dim(s)[1],],1, function(x) dist(rbind(x,s[dim(s)[1],]))/sqrt(sum(s[dim(s)[1],]!=0)))# calcula a distancia euclidiana entre cada vetor de betweenness e o vetor medio
return(c(mean(partial),partial)) # A estatítica é a soma das distancias
}
#' Network equality test
#' @name networkTest
#' @description Test of equality between network properties
#' @param expr Matrix of variables (columns) vs samples (rows)
#' @param labels a vector in which a position indicates the phenotype of the corresponding sample or state
#' @param adjacencyMatrix a function that returns the adjacency matrix for a given variables values matrix
#' @param numPermutations number of permutations that will be carried out in the permutation test
#' @param options a list containing parameters. Used only in degreeDistributionTest, spectralEntropyTest and spectralDistributionTest functions. It can be set to either \code{list(bandwidth="Sturges")} or \code{list(bandwidth="Silverman")}.
#' @param BPPARAM An optional BiocParallelParam instance determining the parallel back-end to be used during evaluation, or a list of BiocParallelParam instances, to be applied in sequence for nested calls to BiocParallel functions. MulticoreParam()
#' @return A list containing:
#' "measure" - difference among two or more networks associated with each phenotype. To compare networks by centralities and clustering coefficient,
#' one uses euclidian distance. In spectral entropy comparison, one uses the absolute difference. In distributions (spectral and degree) comparison,
#' one uses Kulback-Liebler divergence.
#' "p.value" - the Nominal p-value of the test.
#' "Partial" - a vector with the weigths of each network in a measure value.
#' @examples
#' set.seed(1)
#' data("varFile")
#' gliomaData <- system.file("extdata", "variablesValue_BioNetStat_tutorial_data.csv", package = "BioNetStat")
#' labels<-doLabels(gliomaData)
#' adjacencyMatrix1 <- adjacencyMatrix(method="spearman", association="pvalue",
#' threshold="fdr", thr.value=0.05, weighted=FALSE)
#' # The numPermutations number is 1 to do a faster example, but we advise to use unless 1000 permutations in real analysis
#' @rdname networkTest
#' @examples
#'
#' # Degree centrality test
#' diffNetAnalysis(method=degreeCentralityTest, varFile=varFile, labels=labels, varSets=NULL,
#' adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
#' seed=NULL, min.vert=5, option=NULL)
#' @export
degreeCentralityTest <- function(expr, labels, adjacencyMatrix, numPermutations=1000, options=NULL, BPPARAM=NULL) {
lab<-levels(as.factor(labels)) # salva os fatores de labels em lab.
if(any(lab=="-1")) lab<-lab[-which(lab=="-1")] # se houver o fator "-1" ele é retirado dos fatores.
A<-lapply(lab, function(x) adjacencyMatrix(expr[labels==x,]))
weighted <- NULL # Define o weighted como NULL, assim como na função original
v<-vapply(A,FUN = function(x) sum(x==0) + sum(x==1) == length(x),FUN.VALUE = vector(length = 1))
if(any(!v)) weighted <- TRUE
output<-resInt(A,expr,weighted,graph.strength)
if(is.null(BPPARAM)) results<-lapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
return(resInt(A,expr,weighted,graph.strength)[1])})
else results<-bplapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
return(resInt(A,expr,weighted,graph.strength)[1])
}, BPPARAM=BPPARAM)
results<-do.call(c,results)
pvalue <- (1 + sum(results >= output[1]))/(numPermutations + 1)
return(list("measure"=output[1], "p.value"=pvalue,"Partial"=output[-1]))
}
#' @rdname networkTest
#' @examples
#'
#' # Betweenness centrality test
#' diffNetAnalysis(method=betweennessCentralityTest, varFile=varFile, labels=labels, varSets=NULL,
#' adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
#' seed=NULL, min.vert=5, option=NULL)
#' @export
betweennessCentralityTest <- function(expr, labels, adjacencyMatrix,numPermutations=1000, options=NULL,BPPARAM=NULL) {
# Betweenness centrality test for many graphs
lab<-levels(as.factor(labels)) # salva os fatores de labels em lab.
if(any(lab=="-1")) lab<-lab[-which(lab=="-1")] # se houver o fator "-1" ele é retirado dos fatores.
A<-lapply(lab, function(x) adjacencyMatrix(expr[labels==x,]))
weighted <- NULL # Define o weighted como NULL, assim como na função original
v<-vapply(A,FUN = function(x) sum(x==0) + sum(x==1) == length(x),FUN.VALUE = vector(length = 1))
if(any(!v)) weighted <- TRUE
if (!is.null(weighted)) A<-lapply(A,invWeigthts)
output<-resInt(A,expr,weighted,betweenness)
if(is.null(BPPARAM)) results<-lapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
if (!is.null(weighted)) A<-lapply(A,invWeigthts)
return(resInt(A,expr,weighted,betweenness)[1])})
else results<-bplapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
if (!is.null(weighted)) A<-lapply(A,invWeigthts)
return(resInt(A,expr,weighted,betweenness)[1])
}, BPPARAM=BPPARAM)
results<-do.call(c,results)
pvalue <- (1 + sum(results >= output[1]))/(numPermutations + 1)
return(list("measure"=output[1], "p.value"=pvalue,"Partial"=output[-1]))
}
#' @rdname networkTest
#' @examples
#'
#' # Closeness centrality test
#' diffNetAnalysis(method=closenessCentralityTest, varFile=varFile, labels=labels, varSets=NULL,
#' adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
#' seed=NULL, min.vert=5, option=NULL)
#' @export
closenessCentralityTest <- function(expr, labels, adjacencyMatrix,numPermutations=1000, options=NULL, BPPARAM=NULL) {
# Closeness centrality test for many graphs
lab<-levels(as.factor(labels)) # salva os fatores de labels em lab.
if(any(lab=="-1")) lab<-lab[-which(lab=="-1")] # se houver o fator "-1" ele é retirado dos fatores.
A<-lapply(lab, function(x) adjacencyMatrix(expr[labels==x,]))
weighted <- NULL # Define o weighted como NULL, assim como na função original
v<-vapply(A,FUN = function(x) sum(x==0) + sum(x==1) == length(x),FUN.VALUE = vector(length = 1))
if(any(!v)) weighted <- TRUE
if (!is.null(weighted)) A<-lapply(A,invWeigthts)
output<-resInt(A,expr,weighted,closeness)
if(is.null(BPPARAM)) results<-lapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
if (!is.null(weighted)) A<-lapply(A,invWeigthts)
return(resInt(A,expr,weighted,closeness)[1])})
else results<-bplapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
if (!is.null(weighted)) A<-lapply(A,invWeigthts)
return(resInt(A,expr,weighted,closeness)[1])
}, BPPARAM=BPPARAM)
results<-do.call(c,results)
pvalue <- (1 + sum(results >= output[1]))/(numPermutations + 1)
return(list("measure"=output[1], "p.value"=pvalue,"Partial"=output[-1]))
}
#' @rdname networkTest
#' @examples
#'
#' # Eigenvector centrality test
#' diffNetAnalysis(method=eigenvectorCentralityTest, varFile=varFile, labels=labels, varSets=NULL,
#' adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
#' seed=NULL, min.vert=5, option=NULL)
#' @export
eigenvectorCentralityTest <- function(expr, labels, adjacencyMatrix,numPermutations=1000, options=NULL, BPPARAM=NULL) {
# Eigenvector centrality test for many graphs
lab<-levels(as.factor(labels)) # salva os fatores de labels em lab.
if(any(lab=="-1")) lab<-lab[-which(lab=="-1")] # se houver o fator "-1" ele é retirado dos fatores.
A<-lapply(lab, function(x) adjacencyMatrix(expr[labels==x,]))
weighted <- NULL # Define o weighted como NULL, assim como na função original
v<-vapply(A,FUN = function(x) sum(x==0) + sum(x==1) == length(x),FUN.VALUE = vector(length = 1))
if(any(!v)) weighted <- TRUE
output<-resInt(A,expr,weighted,function(x) evcent(x)$vector)
if(is.null(BPPARAM)) results<-lapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
return(resInt(A,expr,weighted,function(x) evcent(x)$vector)[1])})
else results<-bplapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
return(resInt(A,expr,weighted,function(x) evcent(x)$vector)[1])
}, BPPARAM=BPPARAM)
results<-do.call(c,results)
pvalue <- (1 + sum(results >= output[1]))/(numPermutations + 1)
return(list("measure"=output[1], "p.value"=pvalue,"Partial"=output[-1]))
}
#' @rdname networkTest
#' @examples
#'
#' # Clustering coefficient test
#' diffNetAnalysis(method=clusteringCoefficientTest, varFile=varFile, labels=labels, varSets=NULL,
#' adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
#' seed=NULL, min.vert=5, option=NULL)
#' @export
clusteringCoefficientTest <- function(expr, labels, adjacencyMatrix, numPermutations=1000, options=NULL, BPPARAM=NULL) {
lab<-levels(as.factor(labels)) # salva os fatores de labels em lab.
if(any(lab=="-1")) lab<-lab[-which(lab=="-1")] # se houver o fator "-1" ele é retirado dos fatores.
A<-lapply(lab, function(x) adjacencyMatrix(expr[labels==x,]))
weighted <- NULL # Define o weighted como NULL, assim como na função original
v<-vapply(A,FUN = function(x) sum(x==0) + sum(x==1) == length(x),FUN.VALUE = vector(length = 1))
if(any(!v)) weighted <- TRUE
if (!is.null(weighted)) {
n <- ncol(expr)
A<-lapply(A,abs)
s<-lapply(A, clusterCoef)
s<-do.call(rbind,s)
s<-rbind(s,apply(s,MARGIN=2,FUN=mean))
partial<-apply(s[-dim(s)[1],],1, function(x) dist(rbind(x,s[dim(s)[1],]))/sqrt(n))
output<-c(sum(partial),partial)
}
else{
output<-resInt(A,expr,weighted,function(x){transitivity(x,type="local", isolates="zero")})
}
if(is.null(BPPARAM)) results<-lapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
if (!is.null(weighted)){
A<-lapply(A,abs)
s<-lapply(A, clusterCoef)
s<-do.call(rbind,s)
s<-rbind(s,apply(s,MARGIN=2,FUN=mean))
res<-apply(s[-dim(s)[1],],1, function(x) dist(rbind(x,s[dim(s)[1],]))/sqrt(n))
return(sum(res))
}
else return(resInt(A,expr,weighted,function(x){transitivity(x,type="local", isolates="zero")}))
})
else results<-bplapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
if (!is.null(weighted)){
A<-lapply(A,abs)
s<-lapply(A, clusterCoef)
s<-do.call(rbind,s)
s<-rbind(s,apply(s,MARGIN=2,FUN=mean))
res<-apply(s[-dim(s)[1],],1, function(x) dist(rbind(x,s[dim(s)[1],]))/sqrt(n))
return(sum(res))
}
else return(resInt(A,expr,weighted,function(x){transitivity(x,type="local", isolates="zero")}))
}, BPPARAM=BPPARAM)
results<-do.call(c,results)
pvalue <- (1 + sum(results >= output[1]))/(numPermutations + 1)
return(list("measure"=output[1], "p.value"=pvalue,"Partial"=output[-1]))
}
#' @rdname networkTest
#' @examples
#'
#' # Edge betweenness centrality test
#' diffNetAnalysis(method=edgeBetweennessTest, varFile=varFile, labels=labels, varSets=NULL,
#' adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
#' seed=NULL, min.vert=5, option=NULL)
#' @export
edgeBetweennessTest <- function(expr, labels, adjacencyMatrix, numPermutations=1000, options=NULL, BPPARAM=NULL) {
lab<-levels(as.factor(labels)) # salva os fatores de labels em lab.
if(any(lab=="-1")) lab<-lab[-which(lab=="-1")] # se houver o fator "-1" ele é retirado dos fatores.
A<-lapply(lab, function(x) adjacencyMatrix(expr[labels==x,]))
weighted <- NULL # Define o weighted como NULL, assim como na função original
v<-vapply(A,FUN = function(x) sum(x==0) + sum(x==1) == length(x),FUN.VALUE = vector(length = 1))
if(any(!v)) weighted <- TRUE
output<-edgesResInt(A,expr,weighted,edge_betweenness)
if(is.null(BPPARAM)) results<-lapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
return(edgesResInt(A,expr,weighted,edge_betweenness)[1])})
else results<-bplapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
return(edgesResInt(A,expr,weighted,edge_betweenness)[1])
}, BPPARAM=BPPARAM)
results<-do.call(c,results)
pvalue <- (1 + sum(results >= output[1]))/(numPermutations + 1)
return(list("measure"=output[1], "p.value"=pvalue,"Partial"=output[-1]))
}
# #' @rdname networkTest
# #' @examples
# #'
# #' # Shortest path test
# #' shortestPathTest(expr, labels, adjacencyMatrix1,numPermutations=1)
# #' @export
# shortestPathTest <- function(expr, labels, adjacencyMatrix, numPermutations=1000, options=NULL, BPPARAM=MulticoreParam()) {
# # Shortest path test for many graphs
# lab<-levels(as.factor(labels)) # salva os fatores de labels em lab.
# if(any(lab=="-1")) lab<-lab[-which(lab=="-1")] # se houver o fator "-1" ele é retirado dos fatores.
# A<-lapply(lab, function(x) adjacencyMatrix(expr[labels==x,]))
# weighted <- NULL # Define o weighted como NULL, assim como na função original
# v<-vapply(A,FUN = function(x) sum(x==0) + sum(x==1) == length(x),FUN.VALUE = vector(length = 1))
# if(any(!v)) weighted <- TRUE
# if (!is.null(weighted)) A<-lapply(A,invWeigthts)
# # if(is.null(weighted)) output<-resInt(A,expr,weighted,function(x){average.path.length(x,directed=FALSE)})
# # else output<-resInt(A,expr,weighted,function(y){apply(distances(y), 1, function(x){ min(x[x!=0])})})
# output<-resInt(A,expr,weighted,function(y){apply(distances(y), 1, function(x){ min(x[x!=0])})})
# results<-bplapply(seq_len(numPermutations),function(i){
# l <- sample(labels, replace = FALSE)
# A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
# if(is.null(weighted)){
# A<-lapply(A,invWeigthts)
# return(resInt(A,expr,weighted,function(x){average.path.length(x,directed=FALSE)})[1])
# }
# else return(resInt(A,expr,weighted,function(y){apply(distances(y), 1, function(x){ min(x[x!=0])})})[1])
# }, BPPARAM=BPPARAM)
# results<-do.call(c,results)
# pvalue <- (1 + sum(results >= output[1]))/(numPermutations + 1)
# return(list("measure"=output[1], "p.value"=pvalue,"Partial"=output[-1]))
# }
#' @rdname networkTest
#' @examples
#'
#' # Degree distribution test
#' diffNetAnalysis(method=degreeDistributionTest, varFile=varFile, labels=labels, varSets=NULL,
#' adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
#' seed=NULL, min.vert=5, options=list(bandwidth="Sturges"))
#' @export
degreeDistributionTest <- function(expr, labels, adjacencyMatrix, numPermutations=1000, options=list(bandwidth="Sturges"), BPPARAM=NULL) {
lab<-levels(as.factor(labels)) # salva os fatores de labels em lab.
if(any(lab=="-1")) lab<-lab[-which(lab=="-1")] # se houver o fator "-1" ele é retirado dos fatores.
A<-lapply(lab, function(x) adjacencyMatrix(expr[labels==x,]))
A<-lapply(A,abs)
weighted <- NULL # Define o weighted como NULL, assim como na função original
v<-vapply(A,FUN = function(x) sum(x==0) + sum(x==1) == length(x),FUN.VALUE = vector(length = 1))
if(any(!v)) weighted <- TRUE
G<-lapply(A,graph.adjacency, mode="undirected", weighted=weighted)# guarda a rede
f<-nDegreeDensities(Gs=G, bandwidth=options$bandwidth)
result<-KLdegree(f)
if(length(result$Partial)==1 & all(is.na(result$Partial))) result$Partial<-rep(NA,length(G))
if(is.null(BPPARAM)) results<-lapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
A<-lapply(A,abs)
G<-lapply(A,graph.adjacency, mode="undirected", weighted=weighted)# guarda a rede
f<-nDegreeDensities(Gs=G, bandwidth=options$bandwidth)
return(KLdegree(f)$theta)})
else results<-bplapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
A<-lapply(A,abs)
G<-lapply(A,graph.adjacency, mode="undirected", weighted=weighted)# guarda a rede
f<-nDegreeDensities(Gs=G, bandwidth=options$bandwidth)
return(KLdegree(f)$theta)
}, BPPARAM=BPPARAM)
results<-do.call(c,results)
pvalue <- (1 + sum(results >= result$theta))/(numPermutations + 1)
return(list("measure"=result$theta, "p.value"=pvalue,"Partial"=result$Partial))
}
#' @rdname networkTest
#' @examples
#'
#' # Spectral entropy test
#' diffNetAnalysis(method=spectralEntropyTest, varFile=varFile, labels=labels, varSets=NULL,
#' adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
#' seed=NULL, min.vert=5, options=list(bandwidth="Sturges"))
#' @export
spectralEntropyTest <- function(expr, labels, adjacencyMatrix, numPermutations=1000, options=list(bandwidth="Sturges"), BPPARAM=NULL) {
lab<-levels(as.factor(labels)) # salva os fatores de labels em lab.
if(any(lab=="-1")) lab<-lab[-which(lab=="-1")] # se houver o fator "-1" ele é retirado dos fatores.
A<-lapply(lab, function(x) adjacencyMatrix(expr[labels==x,]))
A<-lapply(A,abs)
f<-nSpectralDensities(A, bandwidth=options$bandwidth) # Lista com as coordenadas (x,y) da dist. espectral dos grafos de "A"
entropies<-vector(length=length(A)) # vetor para guardar entropias
for(j in seq_len(length(A))){ # uma entropia para cada grafo
entropies[j]<-entropy(list("x"=f$x, "y"=f$densities[,j]))
}
meanDensity <- list("x"=f$x, "y"=rowMeans(f$densities)) # Calcula a entropia média a partir de uma distribuicao media
result<-sqrt((sum((entropies-entropy(meanDensity))^2))/length(entropies)) # idem e Calcula a raiz da soma dos quadrados das diferenças entre as entropias e a média
partial<-sqrt(((entropies-entropy(meanDensity))^2)/length(entropies)) # idem e Calcula a raiz da soma dos quadrados das diferenças entre as entropias e a média
if(is.null(BPPARAM)) results<-lapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE) # Reamostra os labels sem reposicao
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
A<-lapply(A,abs)
f<-nSpectralDensities(A, bandwidth=options$bandwidth) # Lista com as coordenadas (x,y) da dist. espectral dos grafos de "A"
entropies<-vector(length=length(A)) # vetor para guardar entropias
for(j in seq_len(length(A))){ # uma entropia para cada grafo
entropies[j]<-entropy(list("x"=f$x, "y"=f$densities[,j]))
}
meanDensity <- list("x"=f$x, "y"=rowMeans(f$densities)) # Calcula a entropia média a partir de uma distribuicao media
return(sqrt((sum((entropies-entropy(meanDensity))^2))/length(entropies)))
}) # idem e Calcula a raiz da soma dos quadrados das diferenças entre as entropias e a média
else results<-bplapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE) # Reamostra os labels sem reposicao
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
A<-lapply(A,abs)
f<-nSpectralDensities(A, bandwidth=options$bandwidth) # Lista com as coordenadas (x,y) da dist. espectral dos grafos de "A"
entropies<-vector(length=length(A)) # vetor para guardar entropias
for(j in seq_len(length(A))){ # uma entropia para cada grafo
entropies[j]<-entropy(list("x"=f$x, "y"=f$densities[,j]))
}
meanDensity <- list("x"=f$x, "y"=rowMeans(f$densities)) # Calcula a entropia média a partir de uma distribuicao media
return(sqrt((sum((entropies-entropy(meanDensity))^2))/length(entropies))) # idem e Calcula a raiz da soma dos quadrados das diferenças entre as entropias e a média
}, BPPARAM=BPPARAM)
results<-do.call(c,results)
pvalue <- (1 + sum(results >= result))/(numPermutations + 1) # calculo do pvalor
return(list("measure"=result, "p.value"=pvalue,"Partial"=partial))
}
#' @rdname networkTest
#' @examples
#'
#' # Spectral distribution test
#' diffNetAnalysis(method=spectralDistributionTest, varFile=varFile, labels=labels, varSets=NULL,
#' adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
#' seed=NULL, min.vert=5, options=list(bandwidth="Sturges"))
#' @export
spectralDistributionTest <- function(expr, labels, adjacencyMatrix, numPermutations=1000, options=list(bandwidth="Sturges"), BPPARAM=NULL) {
lab<-levels(as.factor(labels)) # salva os fatores de labels em lab.
if(any(lab=="-1")) lab<-lab[-which(lab=="-1")] # se houver o fator "-1" ele é retirado dos fatores.
A<-lapply(lab, function(x) adjacencyMatrix(expr[labels==x,]))
A<-lapply(A,abs)
f<-nSpectralDensities(A, bandwidth=options$bandwidth) # Lista com as coordenadas (x,y) da dist. espectral dos grafos de "A"
result<-KLspectrum(f)
if(is.null(BPPARAM)) results<-lapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
A<-lapply(A,abs)
f<-nSpectralDensities(A, bandwidth=options$bandwidth) # Lista com as coordenadas (x,y) da dist. espectral dos grafos de "A"
return(KLspectrum(f)$theta)})
else results<-bplapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
A<-lapply(A,abs)
f<-nSpectralDensities(A, bandwidth=options$bandwidth) # Lista com as coordenadas (x,y) da dist. espectral dos grafos de "A"
return(KLspectrum(f)$theta)
}, BPPARAM = BPPARAM)
results<-do.call(c,results)
pvalue <- (1 + sum(results >= result$theta))/(numPermutations + 1)
return(list("measure"=result$theta, "p.value"=pvalue,"Partial"=result$Partial))
}
# ------------------------------------------------------------------------------
# Test of equality of vertices between network properties
# ------------------------------------------------------------------------------
resVertexInt <- function(A,expr,weighted,fun){
n <- ncol(expr)# numero de genes
A<-lapply(A,abs)
G<-lapply(A,graph.adjacency, mode="undirected", weighted=weighted)# guarda a rede
s<-lapply(G, fun)# guarda o betweenness
s<-do.call(rbind,s) # "s" é uma matrix onde serão guardados os vetores dos betweenness e um vetor de média deles
s<-rbind(s,apply(s,MARGIN=2,FUN=mean))
sp<-s[-(nrow(s)),]
result<-apply(s[-(nrow(s)),],1,function(x) abs(x-s[dim(s)[1],]))
result<-apply(result,1,sum)
return(cbind(result,t(sp))) # A estatítica é a soma das distancias
}
edgesResEdgesInt <- function(A,expr,weighted,fun){
A<-lapply(A,abs)
G<-lapply(A,graph.adjacency, mode="undirected", weighted=weighted)# guarda a rede
s<-lapply(G, function(x){
M<-as.matrix(as_adj(x,edges = T,type = "lower"))
M[M!=0]<-fun(x, directed=FALSE)
return(as.vector(M))
})# guarda a centralidade
s<-do.call(rbind,s) # "s" é uma matrix onde serão guardados os vetores dos betweenness e um vetor de média deles
s<-rbind(s,apply(s,MARGIN=2,FUN=mean))
sp<-s[-(nrow(s)),]
result<-apply(s[-(nrow(s)),],1,function(x) abs(x-s[dim(s)[1],]))
result<-apply(result,1,sum)
return(cbind(result,t(sp)))
}
retTable <- function(results,output,expr,numPermutations,lab){
results<-do.call(rbind,results)
pvalue <- (1 + apply(t(t(results) >= output[,1]),2,sum))/(numPermutations + 1)
saida<-cbind(stat=round(output[,1],3),pvalue=round(pvalue,4),qvalue=round(p.adjust(pvalue,method="fdr"),4),round(output[,-1],3))
rownames(saida)<-colnames(expr)
saida<-saida[order(saida[,"pvalue"]),]
colnames(saida)<-c("Test Statistic","Nominal p-value","Q-value",paste(0:max(as.numeric(lab))))
return(saida)
}
retEdgesTable <- function(results,output,expr,numPermutations,lab){
results<-do.call(rbind,results)
pvalue <- (1 + apply(t(t(results) >= output[,1]),2,sum))/(numPermutations + 1)
saida<-cbind(stat=round(output[,1],3),pvalue=round(pvalue,4),qvalue=round(pvalue,4),round(output[,-1],3))
saida<-saida[order(saida[,"pvalue"]),]
colnames(saida)<-c("Test Statistic","Nominal p-value","Q-value",paste("Factor",0:max(as.numeric(lab))))
saida<-saida[-c(which(apply(saida,1,function (x) all(x[c(1,4:6)]==0)))),]
saida[,3]<-round(p.adjust(saida[,2],method="fdr"),4)
return(saida)
}
#' Node score equality test
#' @name nodeTest
#' @description Nodes scores equality test between network
#' @param expr Matrix of variables (columns) vs samples (rows)
#' @param labels a vector in which a position indicates the phenotype of the corresponding sample or state
#' @param adjacencyMatrix a function that returns the adjacency matrix for a given variables values matrix
#' @param numPermutations number of permutations that will be carried out in the permutation test
#' @param options argument non used in this function
#' @param BPPARAM An optional BiocParallelParam instance determining the parallel back-end to be used during evaluation, or a list of BiocParallelParam instances, to be applied in sequence for nested calls to BiocParallel functions. MulticoreParam()
#' @return A table, containing on the columns, the following informations for each variable (rows):
#' "Test Statistic" - difference among the degree centrality of a node in two or more networks associated with each phenotype
#' "Nominal p-value" - the Nominal p-value of the test
#' "Q-value" - the q-value of the test, correction of p-value by FDR to many tests
#' "Factor n" - the node degree centrality in each network compared
#' @examples
#' set.seed(1)
#' expr <- as.data.frame(matrix(rnorm(120),40,30))
#' labels<-data.frame(code=rep(0:3,10),names=rep(c("A","B","C","D"),10))
#' adjacencyMatrix1 <- adjacencyMatrix(method="spearman", association="pvalue",
#' threshold="fdr", thr.value=0.05, weighted=FALSE)
#' # The numPermutations number is 1 to do a faster example, but we advise to use unless 1000 permutations in real analysis
#' @rdname nodeTest
#' @examples
#'
#' # Degree centrality test
#' diffNetAnalysis(method=degreeCentralityVertexTest, varFile=expr, labels=labels, varSets=NULL,
#' adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
#' seed=NULL, min.vert=5, option=NULL)
#' @export
degreeCentralityVertexTest <- function(expr, labels, adjacencyMatrix, numPermutations=1000, options=NULL,BPPARAM=NULL) {
lab<-levels(as.factor(labels)) # salva os fatores de labels em lab.
if(any(lab=="-1")) lab<-lab[-which(lab=="-1")] # se houver o fator "-1" ele é retirado dos fatores.
A<-lapply(lab, function(x) adjacencyMatrix(expr[labels==x,]))
weighted <- NULL # Define o weighted como NULL, assim como na função original
v<-vapply(A,FUN = function(x) sum(x==0) + sum(x==1) == length(x),FUN.VALUE = vector(length = 1))
if(any(!v)) weighted <- TRUE
output<-resVertexInt(A,expr,weighted,graph.strength)
if(is.null(BPPARAM)) results<-lapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
return(resVertexInt(A,expr,weighted,graph.strength)[,1])})
else results<-bplapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
return(resVertexInt(A,expr,weighted,graph.strength)[,1])
}, BPPARAM=BPPARAM)
return(retTable(results,output,expr,numPermutations,lab))
}
#' @rdname nodeTest
#' @examples
#'
#' # Betweenness centrality test
#' diffNetAnalysis(method=betweennessCentralityVertexTest, varFile=expr, labels=labels, varSets=NULL,
#' adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
#' seed=NULL, min.vert=5, option=NULL)
#' @export
betweennessCentralityVertexTest <- function(expr, labels, adjacencyMatrix, numPermutations=1000, options=NULL, BPPARAM=NULL) {
# Betweenness centrality test for many graphs
lab<-levels(as.factor(labels)) # salva os fatores de labels em lab.
if(any(lab=="-1")) lab<-lab[-which(lab=="-1")] # se houver o fator "-1" ele é retirado dos fatores.
A<-lapply(lab, function(x) adjacencyMatrix(expr[labels==x,]))
weighted <- NULL # Define o weighted como NULL, assim como na função original
v<-vapply(A,FUN = function(x) sum(x==0) + sum(x==1) == length(x),FUN.VALUE = vector(length = 1))
if(any(!v)) weighted <- TRUE
if (!is.null(weighted)) A<-lapply(A,invWeigthts)
output<-resVertexInt(A,expr,weighted,betweenness)
if(is.null(BPPARAM)) results<-lapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE) # Faz a permutação dos labels
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
if (!is.null(weighted)) A<-lapply(A,invWeigthts)
return(resVertexInt(A,expr,weighted,betweenness)[,1])})
else results<-bplapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE) # Faz a permutação dos labels
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
if (!is.null(weighted)) A<-lapply(A,invWeigthts)
return(resVertexInt(A,expr,weighted,betweenness)[,1])
}, BPPARAM=BPPARAM)
return(retTable(results,output,expr,numPermutations,lab))
}
#' @rdname nodeTest
#' @examples
#'
#' # Closeness centrality test
#' diffNetAnalysis(method=closenessCentralityVertexTest, varFile=expr, labels=labels, varSets=NULL,
#' adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
#' seed=NULL, min.vert=5, option=NULL)
#' @export
closenessCentralityVertexTest <- function(expr, labels, adjacencyMatrix, numPermutations=1000, options=NULL, BPPARAM=NULL) {
lab<-levels(as.factor(labels)) # salva os fatores de labels em lab.
if(any(lab=="-1")) lab<-lab[-which(lab=="-1")] # se houver o fator "-1" ele é retirado dos fatores.
A<-lapply(lab, function(x) adjacencyMatrix(expr[labels==x,]))
weighted <- NULL # Define o weighted como NULL, assim como na função original
v<-vapply(A,FUN = function(x) sum(x==0) + sum(x==1) == length(x),FUN.VALUE = vector(length = 1))
if(any(!v)) weighted <- TRUE
if (!is.null(weighted)) A<-lapply(A,invWeigthts)
output<-resVertexInt(A,expr,weighted,closeness)
if(is.null(BPPARAM)) results<-lapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE) # Faz a permutação dos labels
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
if (!is.null(weighted)) A<-lapply(A,invWeigthts)
return(resVertexInt(A,expr,weighted,closeness)[,1])})
else results<-bplapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE) # Faz a permutação dos labels
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
if (!is.null(weighted)) A<-lapply(A,invWeigthts)
return(resVertexInt(A,expr,weighted,closeness)[,1])
}, BPPARAM=BPPARAM)
return(retTable(results,output,expr,numPermutations,lab))
}
#' @rdname nodeTest
#' @examples
#'
#' # Eigenvector centrality test
#' diffNetAnalysis(method=eigenvectorCentralityVertexTest, varFile=expr, labels=labels, varSets=NULL,
#' adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
#' seed=NULL, min.vert=5, option=NULL)
#' @export
eigenvectorCentralityVertexTest <- function(expr, labels, adjacencyMatrix, numPermutations=1000, options=NULL, BPPARAM=NULL) {
lab<-levels(as.factor(labels)) # salva os fatores de labels em lab.
if(any(lab=="-1")) lab<-lab[-which(lab=="-1")] # se houver o fator "-1" ele é retirado dos fatores.
A<-lapply(lab, function(x) adjacencyMatrix(expr[labels==x,]))
weighted <- NULL # Define o weighted como NULL, assim como na função original
v<-vapply(A,FUN = function(x) sum(x==0) + sum(x==1) == length(x),FUN.VALUE = vector(length = 1))
if(any(!v)) weighted <- TRUE
output<-resVertexInt(A,expr,weighted,function(x) evcent(x)$vector)
if(is.null(BPPARAM)) results<-lapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
return(resVertexInt(A,expr,weighted,function(x) evcent(x)$vector)[,1])})
else results<-bplapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
return(resVertexInt(A,expr,weighted,function(x) evcent(x)$vector)[,1])
}, BPPARAM=BPPARAM)
return(retTable(results,output,expr,numPermutations,lab))
}
#' @rdname nodeTest
#' @examples
#'
#' # Clustering coefficient test
#' diffNetAnalysis(method=clusteringCoefficientVertexTest, varFile=expr, labels=labels, varSets=NULL,
#' adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
#' seed=NULL, min.vert=5, option=NULL)
#' @export
clusteringCoefficientVertexTest <- function(expr, labels, adjacencyMatrix, numPermutations=1000, options=NULL, BPPARAM=NULL) {
lab<-levels(as.factor(labels)) # salva os fatores de labels em lab.
if(any(lab=="-1")) lab<-lab[-which(lab=="-1")] # se houver o fator "-1" ele é retirado dos fatores.
A<-lapply(lab, function(x) adjacencyMatrix(expr[labels==x,]))
weighted <- NULL # Define o weighted como NULL, assim como na função original
v<-vapply(A,FUN = function(x) sum(x==0) + sum(x==1) == length(x),FUN.VALUE = vector(length = 1))
if(any(!v)) weighted <- TRUE
if (!is.null(weighted)) {
n <- ncol(expr)
A<-lapply(A,abs)
s<-lapply(A, clusterCoef)
s<-do.call(rbind,s)
s<-rbind(s,apply(s,MARGIN=2,FUN=mean))
sp<-s[-(nrow(s)),]
result<-apply(s[-(nrow(s)),],1,function(x) abs(x-s[dim(s)[1],]))
result<-apply(result,1,sum)
output<-cbind(result,t(sp))
}
else output<-resVertexInt(A,expr,weighted,function(x){transitivity(x,type="local", isolates="zero")})
if(is.null(BPPARAM)) results<-lapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
if (!is.null(weighted)) {
n <- ncol(expr)
A<-lapply(A,abs)
s<-lapply(A, clusterCoef)
s<-do.call(rbind,s)
s<-rbind(s,apply(s,MARGIN=2,FUN=mean))
res<-apply(s[seq_len(dim(s)[1]-1),],1,function(x) abs(x-s[dim(s)[1],]))
return(apply(res,1,sum))
}
else return(resVertexInt(A,expr,weighted,function(x){transitivity(x,type="local", isolates="zero")})[,1])})
else results<-bplapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
if (!is.null(weighted)) {
A<-lapply(A,abs)
n <- ncol(expr)
s<-lapply(A, clusterCoef)
s<-do.call(rbind,s)
s<-rbind(s,apply(s,MARGIN=2,FUN=mean))
res<-apply(s[seq_len(dim(s)[1]-1),],1,function(x) abs(x-s[dim(s)[1],]))
return(apply(res,1,sum))
}
else return(resVertexInt(A,expr,weighted,function(x){transitivity(x,type="local", isolates="zero")})[,1])
}, BPPARAM=BPPARAM)
return(retTable(results,output,expr,numPermutations,lab))
}
#' Edge score equality test
#' @name edgeTest
#' @description Nodes scores equality test between network
#' @param expr Matrix of variables (columns) vs samples (rows)
#' @param labels a vector in which a position indicates the phenotype of the corresponding sample or state
#' @param adjacencyMatrix a function that returns the adjacency matrix for a given variables values matrix
#' @param numPermutations number of permutations that will be carried out in the permutation test
#' @param options argument non used in this function
#' @param BPPARAM An optional BiocParallelParam instance determining the parallel back-end to be used during evaluation, or a list of BiocParallelParam instances, to be applied in sequence for nested calls to BiocParallel functions. MulticoreParam()
#' @return A table, containing on the columns, the following informations for each variable (rows):
#' "Test Statistic" - difference among the degree centrality of a node in two or more networks associated with each phenotype
#' "Nominal p-value" - the Nominal p-value of the test
#' "Q-value" - the q-value of the test, correction of p-value by FDR to many tests
#' "Factor n" - the node degree centrality in each network compared
#' @examples
#' set.seed(1)
#' expr <- as.data.frame(matrix(rnorm(120),40,30))
#' labels<-data.frame(code=rep(0:3,10),names=rep(c("A","B","C","D"),10))
#' adjacencyMatrix1 <- adjacencyMatrix(method="spearman", association="pvalue",
#' threshold="fdr", thr.value=0.05, weighted=FALSE)
#' # The numPermutations number is 1 to do a faster example, but we advise to use unless 1000 permutations in real analysis
#' @rdname edgeTest
#' @examples
#'
#' # Edge betweenness centrality test
#' diffNetAnalysis(method=edgeBetweennessEdgeTest, varFile=expr, labels=labels, varSets=NULL,
#' adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
#' seed=NULL, min.vert=5, option=NULL)
#' @export
edgeBetweennessEdgeTest <- function(expr, labels, adjacencyMatrix, numPermutations=1000, options=NULL,BPPARAM=NULL) {
lab<-levels(as.factor(labels)) # salva os fatores de labels em lab.
if(any(lab=="-1")) lab<-lab[-which(lab=="-1")] # se houver o fator "-1" ele é retirado dos fatores.
A<-lapply(lab, function(x) adjacencyMatrix(expr[labels==x,]))
weighted <- NULL # Define o weighted como NULL, assim como na função original
v<-vapply(A,FUN = function(x) sum(x==0) + sum(x==1) == length(x),FUN.VALUE = vector(length = 1))
if(any(!v)) weighted <- TRUE
output<-edgesResEdgesInt(A,expr,weighted,igraph::edge_betweenness)
if(is.null(BPPARAM)) results<-lapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
return(edgesResEdgesInt(A,expr,weighted,edge_betweenness)[,1])})
else results<-bplapply(seq_len(numPermutations),function(i){
l <- sample(labels, replace = FALSE)
A<-lapply(lab, function(x) adjacencyMatrix(expr[l==x,]))
return(edgesResEdgesInt(A,expr,weighted,edge_betweenness)[,1])
}, BPPARAM=BPPARAM)
return(retEdgesTable(results,output,expr,numPermutations,lab))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.