Nothing
library(CNPBayes)
library(HopkinsHPC)
##NC <- numberCores(10)
dat <- readRDS("~/Software/CNPData/data/simulated_data.rds")
## dimensions are samples x probes x cnp x components
x <- dat[[1]]
outdir <- "~/Software/CNPData/data"
model.files <- file.path(outdir, paste0("simulation_easy", seq_len(10 * 4), ".rds"))
##set.seed(1100)
T <- 1000; T2=500; burnin=250; thin <- 5; maxperm <- 3
index <- seq_len(dim(x)[[3]])
statusdir <- file.path(outdir, "status")
dir.create(statusdir)
status.files <- file.path(statusdir, paste0("easy", seq_len(dim(x)[[3]]*4)))
results <- list()
##results <- foreach(i = index, .packages=c("stats", "CNPBayes"))
##%dopar%{
it <- 1
for(i in index){
set.seed(i)
calledK <- rep(NA, 4)
nIncorrect <- rep(NA, 4)
cat(i, " ")
for(k in 1:4){
if(file.exists(status.files[it])) {
it <- it+1
next()
}
it <- (i-1)*4 + k
xx <- x[, , i, k]
mns <- rowMeans(xx)
pc <- prcomp(xx, center=TRUE, scale.=FALSE)$x[, 1]
if(cor(pc, mns) < cor(-pc, mns)) pc <- -pc
ds <- downSampleEachBatch(pc, nt=250, batch=rep(1, length(pc)))
fit <- computeMarginalLik(ds$y,
nchains=3,
T=T, T2=T2,
burnin=burnin,
thin=thin,
maxperm=3,
K=1:4)
model <- orderModels(fit)[[1]]
dm <- DensityModel(model, merge=TRUE)
calledK[k] <- k(dm)
write.table(NULL, status.files[it])
it <- it+1
}
results[[i]] <- calledK
##return(calledK)
}
dt <- Sys.Date()
saveRDS(results, file=paste0("~/Software/CNPData/data/simulation_easy_", dt, ".rds"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.