Description Usage Arguments Value Author(s) Examples
View source: R/laplacianFromA.R
Calculates the Laplacian associated to an adjacency matrix.
1 | laplacianFromA(A, k=1, ltype=c("meanInfluence", "normalized", "unnormalized", "totalInfluence"))
|
A |
The adjacency matrix of the graph. |
k |
... |
ltype |
A |
A list
containing the following components:
Eigenvectors of the graph Laplacian.
Eigenvalues of the graph Laplacian
Multiplicity of '0' as eigenvalue.
Laurent Jacob, Pierre Neuvial and Sandrine Dudoit
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | library("KEGGgraph")
library("rrcov")
## Create a random graph
graph <- randomWAMGraph(nnodes=5, nedges=7, verbose=TRUE)
plot(graph)
## Retrieve its adjacency matrix
A <- graph@adjMat
## write it to KGML file
grPathname <- "randomWAMGraph.xml"
writeAdjacencyMatrix2KGML(A, pathname=grPathname, verbose=TRUE, overwrite=TRUE)
## read it from file
gr <- parseKGML2Graph(grPathname)
## Two examples of Laplacians from the same graph
lapMI <- laplacianFromA(A, ltype="meanInfluence")
print(lapMI)
lapN <- laplacianFromA(A, ltype="normalized")
print(lapN)
U <- lapN$U
p <- nrow(A)
sigma <- diag(p)/sqrt(p)
X <- twoSampleFromGraph(100, 120, shiftM2=1, sigma, U=U, k=3)
## T2
t <- T2.test(X$X1,X$X2)
str(t)
tu <- graph.T2.test(X$X1, X$X2, lfA=lapMI, k=3)
str(tu)
|
Loading required package: R.utils
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.7.1 (2016-02-15) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.21.0 (2016-10-30) successfully loaded. See ?R.oo for help.
Attaching package: 'R.oo'
The following objects are masked from 'package:methods':
getClasses, getMethods
The following objects are masked from 'package:base':
attach, detach, gc, load, save
R.utils v2.5.0 (2016-11-07) successfully loaded. See ?R.utils for help.
Attaching package: 'R.utils'
The following object is masked from 'package:utils':
timestamp
The following objects are masked from 'package:base':
cat, commandArgs, getOption, inherits, isOpen, parse, warnings
Attaching package: 'KEGGgraph'
The following objects are masked from 'package:R.oo':
getName, getTitle
The following object is masked from 'package:graphics':
plot
Loading required package: robustbase
Scalable Robust Estimators with High Breakdown Point (version 1.4-3)
Attaching package: 'rrcov'
The following object is masked from 'package:R.utils':
getRaw
$U
[,1] [,2] [,3] [,4] [,5]
[1,] -0.4472136 5.992908e-01 0.3193880 0.44496211 -3.753005e-01
[2,] -0.4472136 3.753005e-01 -0.5445805 -0.05858362 5.992908e-01
[3,] -0.4472136 -3.753005e-01 -0.5445805 -0.05858362 -5.992908e-01
[4,] -0.4472136 -2.220446e-16 0.4503850 -0.77275699 -1.443290e-15
[5,] -0.4472136 -5.992908e-01 0.3193880 0.44496211 3.753005e-01
$l
[1] 3.552714e-15 5.196613e-01 1.353491e+00 2.424287e+00 2.619228e+00
$kIdx
[1] TRUE FALSE FALSE FALSE FALSE
$U
[,1] [,2] [,3] [,4] [,5]
[1,] -0.3779645 5.869337e-01 -0.3273268 5.000000e-01 -3.943461e-01
[2,] -0.4629100 3.943461e-01 0.5345225 -7.216450e-16 5.869337e-01
[3,] -0.4629100 -3.943461e-01 0.5345225 4.718448e-16 -5.869337e-01
[4,] -0.5345225 5.551115e-17 -0.4629100 -7.071068e-01 -8.881784e-16
[5,] -0.3779645 -5.869337e-01 -0.3273268 5.000000e-01 3.943461e-01
$l
[1] 1.776357e-15 7.257081e-01 1.166667e+00 1.500000e+00 1.607625e+00
$kIdx
[1] TRUE FALSE FALSE FALSE FALSE
Warning message:
In sqrt(shiftM2) * diff[1:k]/sqrt(rawShiftNorm) :
Recycling array of length 1 in vector-array arithmetic is deprecated.
Use c() or as.vector() instead.
List of 9
$ statistic : Named num [1:2] 44.66 8.77
..- attr(*, "names")= chr [1:2] "T2" "F"
$ parameter : Named num [1:2] 5 214
..- attr(*, "names")= chr [1:2] "df1" "df2"
$ p.value : num 1.39e-07
$ conf.int : NULL
$ estimate : num [1:2, 1:5] -2.28 -2.678 -0.897 -1.144 0.35 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:2] "mean x-vector" "mean y-vector"
.. ..$ : NULL
$ null.value : NULL
$ alternative: chr "true difference in mean vectors is not equal to (0,0,0,0,0)"
$ method : chr "Two-sample Hotelling test"
$ data.name : chr "X$X1 and X$X2"
- attr(*, "class")= chr "htest"
List of 9
$ statistic : Named num [1:2] 43.3 14.3
..- attr(*, "names")= chr [1:2] "T2" "F"
$ parameter : Named num [1:2] 3 216
..- attr(*, "names")= chr [1:2] "df1" "df2"
$ p.value : num 1.57e-08
$ conf.int : NULL
$ estimate : num [1:2, 1:3] 1.586 2.106 -1.018 -1.253 -0.577 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:2] "mean x-vector" "mean y-vector"
.. ..$ : NULL
$ null.value : NULL
$ alternative: chr "true difference in mean vectors is not equal to (0,0,0)"
$ method : chr "Two-sample Hotelling test"
$ data.name : chr "X1 %*% U[, 1:rk, drop = FALSE] and X2 %*% U[, 1:rk, drop = FALSE]"
- attr(*, "class")= chr "htest"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.