Description Usage Arguments Value Author(s) Examples
View source: R/twoSampleFromGraph.R
Given a basis (typically the eigenvectors of a graph Laplacian), builds two multivariate normal samples with mean shift located in the first elements of the basis.
1 | twoSampleFromGraph(n1=20, n2=n1, shiftM2=0, sigma, U, k=ceiling(ncol(U)/3))
|
n1 |
An |
n2 |
An |
shiftM2 |
A |
sigma |
A matrix giving the covariance structure of each sample. |
U |
A matrix giving the desired basis. |
k |
An |
A list
with named elements:
The first sample in the original basis (before transformation by U).
The second sample in the original basis (before transformation by U).
The first sample in the specified basis (after transformation by U).
The second sample in the specified basis (after transformation by U).
The population mean of F1
The population mean of F2
mu1 - mu2
Laurent Jacob, Pierre Neuvial and Sandrine Dudoit
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | library("KEGGgraph")
library("rrcov")
## Create a random graph
graph <- randomWAMGraph(nnodes=5, nedges=7, verbose=TRUE)
plot(graph)
## Retrieve its adjacency matrix
A <- graph@adjMat
## write it to KGML file
grPathname <- "randomWAMGraph.xml"
writeAdjacencyMatrix2KGML(A, pathname=grPathname, verbose=TRUE, overwrite=TRUE)
## read it from file
gr <- parseKGML2Graph(grPathname)
## Two examples of Laplacians from the same graph
lapMI <- laplacianFromA(A, ltype="meanInfluence")
print(lapMI)
lapN <- laplacianFromA(A, ltype="normalized")
print(lapN)
U <- lapN$U
p <- nrow(A)
sigma <- diag(p)/sqrt(p)
X <- twoSampleFromGraph(100, 120, shiftM2=1, sigma, U=U, k=3)
## T2
t <- T2.test(X$X1,X$X2)
str(t)
tu <- graph.T2.test(X$X1, X$X2, lfA=lapMI, k=3)
str(tu)
|
Loading required package: R.utils
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.7.1 (2016-02-15) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.21.0 (2016-10-30) successfully loaded. See ?R.oo for help.
Attaching package: 'R.oo'
The following objects are masked from 'package:methods':
getClasses, getMethods
The following objects are masked from 'package:base':
attach, detach, gc, load, save
R.utils v2.5.0 (2016-11-07) successfully loaded. See ?R.utils for help.
Attaching package: 'R.utils'
The following object is masked from 'package:utils':
timestamp
The following objects are masked from 'package:base':
cat, commandArgs, getOption, inherits, isOpen, parse, warnings
Attaching package: 'KEGGgraph'
The following objects are masked from 'package:R.oo':
getName, getTitle
The following object is masked from 'package:graphics':
plot
Loading required package: robustbase
Scalable Robust Estimators with High Breakdown Point (version 1.4-3)
Attaching package: 'rrcov'
The following object is masked from 'package:R.utils':
getRaw
$U
[,1] [,2] [,3] [,4] [,5]
[1,] -0.4472136 5.992908e-01 0.3193880 0.44496211 -3.753005e-01
[2,] -0.4472136 3.753005e-01 -0.5445805 -0.05858362 5.992908e-01
[3,] -0.4472136 -3.753005e-01 -0.5445805 -0.05858362 -5.992908e-01
[4,] -0.4472136 -2.220446e-16 0.4503850 -0.77275699 -1.443290e-15
[5,] -0.4472136 -5.992908e-01 0.3193880 0.44496211 3.753005e-01
$l
[1] 3.552714e-15 5.196613e-01 1.353491e+00 2.424287e+00 2.619228e+00
$kIdx
[1] TRUE FALSE FALSE FALSE FALSE
$U
[,1] [,2] [,3] [,4] [,5]
[1,] -0.3779645 5.869337e-01 -0.3273268 5.000000e-01 -3.943461e-01
[2,] -0.4629100 3.943461e-01 0.5345225 -7.216450e-16 5.869337e-01
[3,] -0.4629100 -3.943461e-01 0.5345225 4.718448e-16 -5.869337e-01
[4,] -0.5345225 5.551115e-17 -0.4629100 -7.071068e-01 -8.881784e-16
[5,] -0.3779645 -5.869337e-01 -0.3273268 5.000000e-01 3.943461e-01
$l
[1] 1.776357e-15 7.257081e-01 1.166667e+00 1.500000e+00 1.607625e+00
$kIdx
[1] TRUE FALSE FALSE FALSE FALSE
Warning message:
In sqrt(shiftM2) * diff[1:k]/sqrt(rawShiftNorm) :
Recycling array of length 1 in vector-array arithmetic is deprecated.
Use c() or as.vector() instead.
List of 9
$ statistic : Named num [1:2] 44.66 8.77
..- attr(*, "names")= chr [1:2] "T2" "F"
$ parameter : Named num [1:2] 5 214
..- attr(*, "names")= chr [1:2] "df1" "df2"
$ p.value : num 1.39e-07
$ conf.int : NULL
$ estimate : num [1:2, 1:5] -2.28 -2.678 -0.897 -1.144 0.35 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:2] "mean x-vector" "mean y-vector"
.. ..$ : NULL
$ null.value : NULL
$ alternative: chr "true difference in mean vectors is not equal to (0,0,0,0,0)"
$ method : chr "Two-sample Hotelling test"
$ data.name : chr "X$X1 and X$X2"
- attr(*, "class")= chr "htest"
List of 9
$ statistic : Named num [1:2] 43.3 14.3
..- attr(*, "names")= chr [1:2] "T2" "F"
$ parameter : Named num [1:2] 3 216
..- attr(*, "names")= chr [1:2] "df1" "df2"
$ p.value : num 1.57e-08
$ conf.int : NULL
$ estimate : num [1:2, 1:3] 1.586 2.106 -1.018 -1.253 -0.577 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:2] "mean x-vector" "mean y-vector"
.. ..$ : NULL
$ null.value : NULL
$ alternative: chr "true difference in mean vectors is not equal to (0,0,0)"
$ method : chr "Two-sample Hotelling test"
$ data.name : chr "X1 %*% U[, 1:rk, drop = FALSE] and X2 %*% U[, 1:rk, drop = FALSE]"
- attr(*, "class")= chr "htest"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.