Nothing
pv.save <- function(DBAobject,file='model',dir='Robjects',pre='pv_',ext='RData',
compress=TRUE,ascii=FALSE) {
fn <- sprintf('%s/%s%s.%s',dir,pre,file,ext)
if(is(compress,"logical")) {
if(compress==TRUE) {
compress_level <- 9
}
} else {
compress_level <- compress
compress <- TRUE
}
save(DBAobject,file=fn,compress=compress,
compression_level=compress_level,ascii=ascii)
return(fn)
}
pv.load <- function(file='model',dir='Robjects',pre='pv_',ext='RData') {
DBAobject <- NULL
pv <- NULL
load(sprintf('%s/%s%s.%s',dir,pre,file,ext))
if(is.null(DBAobject)) {
DBAobject <- pv
} else {
if(!is.null(DBAobject$config$Version1)) {
if(as.numeric(DBAobject$config$Version1) < 3) {
if(as.numeric(DBAobject$config$Version2) < 99) {
DBAobject <- pv.loadPre3(DBAobject)
}
}
}
}
if(nrow(DBAobject$class) < PV_SPIKEIN) {
DBAobject$class <- rbind(DBAobject$class, Spikein=NA)
}
return(DBAobject)
}
pv.loadPre3 <- function(pv) {
# Make sure it is a DBA object
if(!is(pv,"DBA")) {
class(pv) <- "DBA"
}
# If it already has normalization don't do anything
if(!is.null(pv$norm)) {
return(pv)
}
# If no counts available don't do anything
srcmask <- pv.mask(pv,PV_CALLER,"source") | pv.mask(pv,PV_CALLER,"counts")
if(sum(srcmask)==0) {
return(pv)
}
# Set minimum count to 1 (default is 0 in 3.0)
if (is.null(pv$minCount)) {
pv$minCount <- 1
}
# If an analysis has been run, check for normalization parameters
bSubControlD <- bSubControlE <- TRUE
bFullLibrarySizeD <- bFullLibrarySizeE <- TRUE
con <- pv$contrasts[[1]]
if(!is.null(con)) {
if(!is.null(con$DESeq2)) {
bSubControlD <- con$DESeq2$bSubControl
bFullLibrarySizeD <- con$DESeq2$bFullLibrarySize
}
if(!is.null(con$edgeR)) {
bSubControlE <- con$edgeR$bSubControl
bFullLibrarySizeE <- con$edgeR$bFullLibrarySize
}
}
# Set mode to pre-2.0
if(is.null(pv$design)) {
if(!is.null(pv$contrasts)) {
pv$design <- FALSE
}
}
# Normalize
filtval <- 0
filtFun <- max
if(!is.null(pv$filter)) {
filtval <- pv$filter
}
if(!is.null(pv$filterFun)) {
filtFun <- pv$filterFun
}
# if(bFullLibrarySizeD) {
# pv <- dba.normalize(pv, method = DBA_DESEQ2,
# normalize = DBA_NORM_LIB,
# library = DBA_LIBSIZE_FULL,
# bSubControl = bSubControlD,
# filter = filtval,filterFun = filtFun)
# } else {
# pv <- dba.normalize(pv, method = DBA_DESEQ2,
# normalize = DBA_NORM_RLE,
# library = DBA_LIBSIZE_PEAKREADS,
# bSubControl = bSubControlD,
# filter = filtval,filterFun = filtFun)
# }
#
# if(bFullLibrarySizeE) {
# pv <- dba.normalize(pv, method = DBA_EDGER,
# normalize = DBA_NORM_TMM,
# library = DBA_LIBSIZE_FULL,
# bSubControl = bSubControlE,
# filter = filtval,filterFun = filtFun)
# } else {
# pv <- dba.normalize(pv, method = DBA_EDGER,
# normalize = DBA_NORM_TMM,
# library = DBA_LIBSIZE_PEAKREADS,
# bSubControl = bSubControlE,
# filter = filtval,filterFun = filtFun)
# }
# Turn off blacklists and greylists by default
if(is.null(pv$config$doBlacklist)) {
pv$config$doBlacklist <- FALSE
}
if(is.null(pv$config$doGreylist)) {
pv$config$doGreylist <- FALSE
}
return(pv)
}
## pv.writePeakset --- write out vectorized peaks as a bed file for external
pv.writePeakset <- function(pv,fname,peaks,numCols=4){
if(missing(peaks)) {
peaks <- rep(T,nrow(pv$binding))
} else {
if(sum(class(peaks)=='logical')) {
peaks <- which(peaks)[1]
}
}
if(missing(fname)) {
fname <- NULL
}
if(sum((class(peaks)=='numeric')) || sum((class(peaks)=='integer'))) {
peaks=pv$peaks[[peaks]]
}
if(!is.null(dim(peaks))) {
if(is(peaks[1,1],"character")) {
bed <- pv.do_peaks2bed(peaks,NULL,fname,numCols=numCols)
} else {
bed <- pv.do_peaks2bed(peaks,pv$chrmap,fname,numCols=numCols)
}
} else {
bed <- pv.do_peaks2bed(pv$binding,pv$chrmap,fname,numCols=ncol(pv$binding))
}
return(bed)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.