Nothing
# The Broad Institute
# SOFTWARE COPYRIGHT NOTICE AGREEMENT
# This software and its documentation are copyright 2003 by the
# Broad Institute/Massachusetts Institute of Technology.
# All rights are reserved.
#
# This software is supplied without any warranty or guaranteed support
# whatsoever. Neither the Broad Institute nor MIT can be responsible for
# its use, misuse, or functionality.
# EDIT, 17 Sep 2014, Ludwig Geistlinger
# adapting for use in the EnrichmentBrowser package
#
# EDIT, 03 Aug 2015, Ludwig Geistlinger
# adapting for use in SAFE framework (local and global stat)
# gsea signal2noise ratio as local.stat for safe
local.s2n <- function (X.mat, y.vec, ...)
{
stopifnot(length(unique(y.vec)) == 2)
if (!all(sort(unique(y.vec)) == c(0,1))) {
warning("y.vec is not (0,1), thus Group 1 == ", y.vec[1])
y.vec <- (y.vec == y.vec[1]) * 1
}
return(function(data, vec = y.vec, ...)
{
A <- data + 0.00000001
ind1 <- which(vec==1) # cases
n1 <- length(ind1)
M1 <- rowMeans(A[,ind1])
A2 <- A*A
S1 <- rowMeans(A2[,ind1])
S1 <- S1 - M1*M1
S1 <- sqrt(abs((n1/(n1-1)) * S1))
ind2 <- which(vec==0) # controls
n2 <- length(ind2)
M2 <- rowMeans(A[,ind2])
S2 <- rowMeans(A2[,ind2])
S2 <- S2 - M2*M2
S2 <- sqrt(abs((n2/(n2-1)) * S2))
# small sigma "fix" as used in GeneCluster
S2 <- ifelse(0.2*abs(M2) < S2, S2, 0.2*abs(M2))
S2 <- ifelse(S2 == 0, 0.2, S2)
S1 <- ifelse(0.2*abs(M1) < S1, S1, 0.2*abs(M1))
S1 <- ifelse(S1 == 0, 0.2, S1)
M1 <- M1 - M2
S1 <- S1 + S2
s2n <- M1/S1
return(s2n)
})
}
# TODO: gsea KS stat as global.stat for safe
global.GSEA <-
function (C.mat, u, args.global)
{
m2 <- length(u)
size2 <- (rep(1, m2) %*% C.mat)[1, ]
if (!args.global$one.sided) {
return(function(u, C.mat2 = as.matrix(C.mat), m = m2,
g.vec = size2) {
G <- rep(1, m) %*% t(g.vec)
ranked.Cmatrix <- C.mat2[order(-abs(u)), ] * sqrt((m -
G)/G) - (1 - C.mat2[order(-abs(u)), ]) * sqrt(G/(m -
G))
return(apply(apply(ranked.Cmatrix, 2, cumsum), 2,
max))
})
}
else {
return(function(u, C.mat2 = as.matrix(C.mat), m = m2,
g.vec = size2) {
G <- rep(1, m) %*% t(g.vec)
ranked.Cmatrix <- C.mat2[order(-u), ] * sqrt((m -
G)/G) - (1 - C.mat2[order(-u), ]) * sqrt(G/(m -
G))
return(apply(apply(ranked.Cmatrix, 2, cumsum), 2,
max))
})
}
}
# G S E A -- Gene Set Enrichment Analysis
# This is a methodology for the analysis of global molecular profiles called
# Gene Set Enrichment Analysis (GSEA). It determines states (e.g. phenotypes).
# GSEA operates on all genes from an experiment, rank ordered by the signal to
# noise ratio and determines whether members of an a priori defined gene set are
# nonrandomly distributed towards the top or bottom of the list and thus may
# correspond to an important biological process. To assess significance the
# program uses an empirical permutation procedure to test deviation from random
# that preserves correlations between genes.
#
# For details see Subramanian et al 2005
#
# Inputs:
# input.ds: Input gene expression Affymetrix dataset file in RES or GCT format
# input.cls: Input class vector (phenotype) file in CLS format
# gs.file: Gene set database in GMT format
# output.directory: Directory where to store output and results (default: .)
# reshuffling.type: Type of permutation reshuffling:
# "sample.labels" or "gene.labels" (default: "sample.labels")
# nperm: Number of random permutations (default: 1000)
# weighted.score.type: Enrichment correlation-based weighting:
# 0=no weight (KS), 1=standard weigth, 2 = over-weigth (default: 1)
# gs.size.threshold.min: Minimum size (in genes)
# for database gene sets to be considered (default: 25)
# gs.size.threshold.max: Maximum size (in genes)
# for database gene sets to be considered (default: 500)
# random.seed: Random number generator seed. (default: 123456)
#
# Output:
# The results of the method are stored in the "output.directory"
# specified by the user as part of the input parameters.
# The results files are:
# - Two tab-separated global result text files (one for each phenotype).
# These files are labeled according to the doc string prefix and the
# phenotype name from the CLS file:
# <doc.string>.SUMMARY.RESULTS.REPORT.<phenotype>.txt
# - One set of global plots. They include
# a.- gene list correlation profile,
# b.- global observed and null densities,
# c.- heat map for the entire sorted dataset, and
# d.- p-values vs. NES plot.
# These plots are in a single JPEG file named
# <doc.string>.global.plots.<phenotype>.jpg. When the program is run
# interactively these plots appear on a window in the R GUI.
# - A variable number of tab-separated gene result text files according to
# how many sets pass any of the significance thresholds
# ("nom.p.val.threshold," "fwer.p.val.threshold," and "fdr.q.val.threshold")
# and how many are specified in the "topgs" parameter. These files are
# named: <doc.string>.<gene set name>.report.txt.
# - A variable number of gene set plots (one for each gene set report file).
# These plots include a.- Gene set running enrichment
# "mountain" plot, b.- gene set null distribution and c.- heat map for
# genes in the gene set. These plots are stored in a
# single JPEG file named <doc.string>.<gene set name>.jpg.
# The format (columns) for the global result files is as follows.
# GS : Gene set name.
# SIZE : Size of the set in genes.
# SOURCE : Set definition or source.
# ES : Enrichment score.
# NES : Normalized (multiplicative rescaling) normalized enrichment score.
# NOM p-val : Nominal p-value (from the null distribution of the gene set).
# FDR q-val: False discovery rate q-values
# FWER p-val: Family wise error rate p-values.
# Tag %: Percent of gene set before running enrichment peak.
# Gene %: Percent of gene list before running enrichment peak.
# Signal : enrichment signal strength.
# FDR (median): FDR q-values from the median of the null distributions.
# glob.p.val: P-value using a global statistic
# (number of sets above the set's NES).
#
# The rows are sorted by the NES values
# (from maximum positive or negative NES to minimum)
#
# The format (columns) for the gene set result files is as follows.
#
# #: Gene number in the (sorted) gene set
# GENE : gene name. For example the probe accession number,
# gene symbol or the gene identifier gin the dataset.
# SYMBOL : gene symbol from the gene annotation file.
# DESC : gene description (title) from the gene annotation file.
# LIST LOC : location of the gene in the sorted gene list.
# S2N : signal to noise ratio (correlation) of the gene in the gene list.
# RES : value of the running enrichment score at the gene location.
# CORE_ENRICHMENT: is this gene is the "core enrichment" section of the list?
# Yes or No variable specifying in the gene location is before (positive ES)
# or after (negative ES) the running enrichment peak.
#
# The rows are sorted by the gene location in the gene list.
# The function call to GSEA returns a two element list containing the two
# global result reports as data frames ($report1, $report2).
#
# results1: Global output report for first phenotype
# result2: Global putput report for second phenotype
# Start of GSEA methodology
#######ebrowser usage
#GSEA(input.ds = as.data.frame(exprs(eset)),
# input.cls = cls,
# gs.db = gs.gmt,
# output.directory = out.dir,
# nperm = perm,
# gs.size.threshold.min = GS.MIN.SIZE,
# gs.size.threshold.max = GS.MAX.SIZE)
################
# Main GSEA Analysis Function that implements the entire methodology
GSEA <- function(
input.ds,
input.cls,
gs.db,
output.directory = "",
reshuffling.type = "sample.labels",
nperm = 1000,
padj.method=c("none", "fdr", "fwer"),
weighted.score.type = 1,
#gs.size.threshold.min = 25,
#gs.size.threshold.max = 500,
random.seed = 123456)
{
if (.Platform$OS.type == "windows")
{
memory.limit(6000000000)
memory.limit()
}
# Read input data matrix
set.seed(seed=random.seed, kind = NULL)
adjust.param <- 0.5
dataset <- input.ds
gene.labels <- row.names(dataset)
sample.names <- names(dataset)
A <- data.matrix(dataset)
cols <- ncol(A)
rows <- nrow(A)
# Read input class vector
CLS <- input.cls
class.labels <- CLS$class.v
class.phen <- CLS$phen
phen1 <- class.phen[2] # cases
phen2 <- class.phen[1] # controls
# sort samples according to phenotype
col.index <- order(class.labels, decreasing=TRUE)
class.labels <- class.labels[col.index]
sample.names <- sample.names[col.index]
A <- A[, col.index]
colnames(A) <- sample.names
# Read input gene set database
# temp <- readLines(gs.db, warn=FALSE)
# max.Ng <- length(temp)
# temp.size.G <- sapply(temp,
# function(t) length(unlist(strsplit(t, "\t"))) - 2)
# max.size.G <- max(temp.size.G)
# gs <- matrix(rep("null", max.Ng*max.size.G), nrow=max.Ng, ncol= max.size.G)
# temp.names <- temp.desc <- vector(length = max.Ng, mode = "character")
# gs.count <- 1
# for (i in seq_len(max.Ng))
# {
# spl <- unlist(strsplit(temp[[i]], "\t"))
# gene.set.size <- length(spl) - 2
# gs.line <- noquote(spl)
# gene.set.name <- gs.line[1]
# gene.set.desc <- gs.line[2]
# gene.set.tags <-
# sapply(seq_len(gene.set.size), function(j) gs.line[j + 2])
# existing.set <- is.element(gene.set.tags, gene.labels)
# set.size <- sum(existing.set)
# if ((set.size >= gs.size.threshold.min) &&
# (set.size <= gs.size.threshold.max))
# {
# temp.size.G[gs.count] <- set.size
# gs[gs.count,] <- c(gene.set.tags[existing.set],
# rep(NA, max.size.G - temp.size.G[gs.count]))
# temp.names[gs.count] <- gene.set.name
# temp.desc[gs.count] <- gene.set.desc
# gs.count <- gs.count + 1
# }
# }
Ng <- length(gs.db)
gs.names <- names(gs.db)
size.G <- sapply(gs.db, length)
gs <- matrix(NA, nrow=Ng, ncol=max(size.G))
for(i in seq_len(Ng)) gs[i, seq_len(size.G[i])] <- gs.db[[i]]
N <- nrow(A)
Ns <- ncol(A)
#all.gene.descs <- all.gene.symbols <- gene.labels[i]
Obs.indicator <- Obs.RES <- matrix(nrow= Ng, ncol=N)
Obs.ES <- Obs.arg.ES <- Obs.ES.norm <- vector(length = Ng, mode = "numeric")
# Compute observed and random permutation gene rankings
obs.s2n <- vector(length=N, mode="numeric")
signal.strength <- tag.frac <- gene.frac <-
coherence.ratio <- vector(length=Ng, mode="numeric")
obs.phi.norm <- matrix(nrow = Ng, ncol = nperm)
correl.matrix <- obs.correl.matrix <- order.matrix <-
obs.order.matrix <- matrix(nrow = N, ncol = nperm)
nperm.per.call <- 100
n.groups <- nperm %/% nperm.per.call
n.rem <- nperm %% nperm.per.call
n.perms <- c(rep(nperm.per.call, n.groups), n.rem)
n.ends <- cumsum(n.perms)
n.starts <- n.ends - n.perms + 1
n.tot <- ifelse(n.rem == 0, n.groups, n.groups + 1)
for (nk in seq_len(n.tot))
{
call.nperm <- n.perms[nk]
message(paste("Permutations:", n.starts[nk], "--", n.ends[nk]))
O <- GSEA.GeneRanking(A, class.labels, gene.labels, call.nperm)
order.matrix[,n.starts[nk]:n.ends[nk]] <- O$order.matrix
obs.order.matrix[,n.starts[nk]:n.ends[nk]] <- O$obs.order.matrix
correl.matrix[,n.starts[nk]:n.ends[nk]] <- O$s2n.matrix
obs.correl.matrix[,n.starts[nk]:n.ends[nk]] <- O$obs.s2n.matrix
rm(O)
}
message("Processing ...")
# using median to assign enrichment scores
obs.s2n <- apply(obs.correl.matrix, 1, median)
names(obs.s2n) <- gene.labels
save(obs.s2n, file=file.path(output.directory, "gsea_s2n.RData"))
obs.index <- order(obs.s2n, decreasing=TRUE)
obs.s2n <- obs.s2n[obs.index]
#obs.gene.labels <- gene.labels[obs.index]
#obs.gene.descs <- all.gene.descs[obs.index]
#obs.gene.symbols <- all.gene.symbols[obs.index]
for (r in seq_len(nperm))
{
correl.matrix[, r] <- correl.matrix[order.matrix[,r], r]
obs.correl.matrix[, r] <- obs.correl.matrix[obs.order.matrix[,r], r]
}
gene.list2 <- obs.index
for (i in seq_len(Ng))
{
gene.set <- gs[i,!is.na(gs[i,])]
gene.set2 <- match(gene.set, gene.labels)
GSEA.results <- GSEA.EnrichmentScore(
gene.list=gene.list2, gene.set=gene.set2,
weighted.score.type=weighted.score.type, correl.vector = obs.s2n)
Obs.ES[i] <- GSEA.results$ES
Obs.arg.ES[i] <- GSEA.results$arg.ES
Obs.RES[i,] <- GSEA.results$RES
Obs.indicator[i,] <- GSEA.results$indicator
if (Obs.ES[i] >= 0)
{
# compute signal strength
tag.frac[i] <- sum(Obs.indicator[i,seq_len(Obs.arg.ES[i])])/size.G[i]
gene.frac[i] <- Obs.arg.ES[i]/N
}
else
{
tag.frac[i] <- sum(Obs.indicator[i, Obs.arg.ES[i]:N])/size.G[i]
gene.frac[i] <- (N - Obs.arg.ES[i] + 1)/N
}
signal.strength[i] <- tag.frac[i] *
(1 - gene.frac[i]) * (N / (N - size.G[i]))
}
# Compute enrichment for random permutations
phi <- phi.norm <- obs.phi <- matrix(nrow = Ng, ncol = nperm)
if (reshuffling.type == "sample.labels")
{
# reshuffling phenotype labels
for (i in seq_len(Ng))
{
gene.set <- gs[i,!is.na(gs[i,])]
gene.set2 <- match(gene.set, gene.labels)
for (r in seq_len(nperm))
{
gene.list2 <- order.matrix[,r]
GSEA.results <- GSEA.EnrichmentScore2(
gene.list=gene.list2, gene.set=gene.set2,
weighted.score.type=weighted.score.type,
correl.vector=correl.matrix[, r])
phi[i, r] <- GSEA.results$ES
}
obs.gene.list2 <- obs.order.matrix[,1]
GSEA.results <- GSEA.EnrichmentScore2(gene.list=obs.gene.list2,
gene.set=gene.set2, weighted.score.type=weighted.score.type,
correl.vector=obs.correl.matrix[, nperm])
obs.phi[i, ] <- GSEA.results$ES
}
}
else if (reshuffling.type == "gene.labels")
{
# reshuffling gene labels
for (i in seq_len(Ng))
{
gene.set <- gs[i,!is.na(gs[i,])]
gene.set2 <- match(gene.set, gene.labels)
for (r in seq_len(nperm))
{
reshuffled.gene.labels <- sample(1:rows)
GSEA.results <- GSEA.EnrichmentScore2(
gene.list=reshuffled.gene.labels, gene.set=gene.set2,
weighted.score.type=weighted.score.type,
correl.vector=obs.s2n)
phi[i, r] <- GSEA.results$ES
}
obs.gene.list2 <- obs.order.matrix[,1]
GSEA.results <- GSEA.EnrichmentScore2(gene.list=obs.gene.list2,
gene.set=gene.set2, weighted.score.type=weighted.score.type,
correl.vector=obs.correl.matrix[, nperm])
obs.phi[i, ] <- GSEA.results$ES
}
}
# Compute 3 types of p-values
padj.method <- match.arg(padj.method)
#
# Find nominal p-values
#
p.vals <- matrix(0, nrow = Ng, ncol = 2)
for (i in seq_len(Ng))
{
ind <- phi[i,] >= 0
pos.phi <- phi[i, ind]
neg.phi <- phi[i, !ind]
ES.value <- Obs.ES[i]
p.vals[i, 1] <- signif(ifelse(ES.value >= 0,
sum(pos.phi >= ES.value)/length(pos.phi),
sum(neg.phi <= ES.value)/length(neg.phi)), digits=5)
# Rescaling normalization for each gene set null
pos.m <- mean(pos.phi)
neg.m <- mean(abs(neg.phi))
pos.phi <- pos.phi/pos.m
neg.phi <- neg.phi/neg.m
for (j in seq_len(nperm))
{
phi.norm[i, j] <-
phi[i, j] / ifelse(phi[i, j] >= 0, pos.m, neg.m)
obs.phi.norm[i, j] <-
obs.phi[i, j] / ifelse(obs.phi[i, j] >= 0, pos.m, neg.m)
}
Obs.ES.norm[i] <- Obs.ES[i] / ifelse(Obs.ES[i] >= 0, pos.m, neg.m)
}
#
#
#
# Compute FWER p-vals
if(padj.method == "fwer")
{
max.ES.vals.p <- NULL
max.ES.vals.n <- NULL
for (j in seq_len(nperm))
{
ind <- phi.norm[,j] >= 0
pos.phi <- phi.norm[ind, j]
neg.phi <- phi[!ind, j]
if (length(pos.phi)) max.ES.vals.p <- c(max.ES.vals.p, max(pos.phi))
if (length(neg.phi)) max.ES.vals.n <- c(max.ES.vals.n, min(neg.phi))
}
for (i in seq_len(Ng))
{
ES.value <- Obs.ES.norm[i]
p.vals[i, 2] <- signif(ifelse(ES.value >= 0,
sum(max.ES.vals.p >= ES.value),
sum(max.ES.vals.n <= ES.value)) /
length(max.ES.vals.p), digits=5)
}
p.vals <- p.vals[,2]
}
# Compute FDRs
if(padj.method == "fdr")
{
NES <- phi.norm.mean <- obs.phi.norm.mean <- phi.norm.median <-
obs.phi.norm.median <- phi.norm.mean <- obs.phi.mean <-
FDR.mean <- FDR.median <- phi.norm.median.d <-
obs.phi.norm.median.d <- vector(length=Ng, mode="numeric")
Obs.ES.index <- order(Obs.ES.norm, decreasing=TRUE)
Orig.index <- seq(1, Ng)
Orig.index <- Orig.index[Obs.ES.index]
Orig.index <- order(Orig.index, decreasing=FALSE)
Obs.ES.norm.sorted <- Obs.ES.norm[Obs.ES.index]
gs.names.sorted <- gs.names[Obs.ES.index]
NES <- Obs.ES.norm.sorted
for (k in seq_len(Ng))
{
ES.value <- NES[k]
count.col <- obs.count.col <- vector(length=nperm, mode="numeric")
for (i in seq_len(nperm))
{
phi.vec <- phi.norm[,i]
obs.phi.vec <- obs.phi.norm[,i]
if (ES.value >= 0)
{
count.col.norm <- sum(phi.vec >= 0)
obs.count.col.norm <- sum(obs.phi.vec >= 0)
count.col[i] <- ifelse(count.col.norm > 0,
sum(phi.vec >= ES.value)/count.col.norm, 0)
obs.count.col[i] <- ifelse(obs.count.col.norm > 0,
sum(obs.phi.vec >= ES.value)/obs.count.col.norm, 0)
}
else
{
count.col.norm <- sum(phi.vec < 0)
obs.count.col.norm <- sum(obs.phi.vec < 0)
count.col[i] <- ifelse(count.col.norm > 0,
sum(phi.vec <= ES.value)/count.col.norm, 0)
obs.count.col[i] <- ifelse(obs.count.col.norm > 0,
sum(obs.phi.vec <= ES.value)/obs.count.col.norm, 0)
}
}
phi.norm.mean[k] <- mean(count.col)
obs.phi.norm.mean[k] <- mean(obs.count.col)
phi.norm.median[k] <- median(count.col)
obs.phi.norm.median[k] <- median(obs.count.col)
FDR.mean[k] <- ifelse(phi.norm.mean[k]/obs.phi.norm.mean[k] < 1,
phi.norm.mean[k]/obs.phi.norm.mean[k], 1)
FDR.median[k] <- ifelse(phi.norm.median[k]/obs.phi.norm.median[k] < 1,
phi.norm.median[k]/obs.phi.norm.median[k], 1)
}
# adjust q-values
adjust.FDR.q.val <- FALSE
if (adjust.FDR.q.val)
{
pos.nes <- sum(NES >= 0)
min.FDR.mean <- FDR.mean[pos.nes]
min.FDR.median <- FDR.median[pos.nes]
for(k in seq(pos.nes - 1, 1, -1))
{
if(FDR.mean[k] < min.FDR.mean) min.FDR.mean <- FDR.mean[k]
if(min.FDR.mean < FDR.mean[k]) FDR.mean[k] <- min.FDR.mean
}
neg.nes <- pos.nes + 1
min.FDR.mean <- FDR.mean[neg.nes]
min.FDR.median <- FDR.median[neg.nes]
for (k in seq(neg.nes + 1, Ng))
{
if(FDR.mean[k] < min.FDR.mean) min.FDR.mean <- FDR.mean[k]
if (min.FDR.mean < FDR.mean[k]) FDR.mean[k] <- min.FDR.mean
}
}
obs.phi.norm.mean.sorted <- obs.phi.norm.mean[Orig.index]
phi.norm.mean.sorted <- phi.norm.mean[Orig.index]
FDR.mean.sorted <- FDR.mean[Orig.index]
FDR.median.sorted <- FDR.median[Orig.index]
p.vals <- FDR.mean.sorted
}
# # Compute global statistic
# glob.p.vals <- vector(length=Ng, mode="numeric")
# NULL.pass <- OBS.pass <- vector(length=nperm, mode="numeric")
# for (k in seq_len(Ng))
# {
# if (NES[k] >= 0)
# {
# for (i in seq_len(nperm))
# {
# NULL.pos <- sum(phi.norm[,i] >= 0)
# NULL.pass[i] <- ifelse(NULL.pos > 0,
# sum(phi.norm[,i] >= NES[k])/NULL.pos, 0)
# OBS.pos <- sum(obs.phi.norm[,i] >= 0)
# OBS.pass[i] <- ifelse(OBS.pos > 0,
# sum(obs.phi.norm[,i] >= NES[k])/OBS.pos, 0)
# }
# }
# else
# {
# for (i in seq_len(nperm))
# {
# NULL.neg <- sum(phi.norm[,i] < 0)
# NULL.pass[i] <- ifelse(NULL.neg > 0,
# sum(phi.norm[,i] <= NES[k])/NULL.neg, 0)
# OBS.neg <- sum(obs.phi.norm[,i] < 0)
# OBS.pass[i] <- ifelse(OBS.neg > 0,
# sum(obs.phi.norm[,i] <= NES[k])/OBS.neg, 0)
# }
# }
# glob.p.vals[k] <- sum(NULL.pass >= mean(OBS.pass))/nperm
# }
# glob.p.vals.sorted <- glob.p.vals[Orig.index]
# Produce results report
Obs.ES <- signif(Obs.ES, digits=5)
Obs.ES.norm <- signif(Obs.ES.norm, digits=5)
p.vals <- signif(p.vals, digits=4)
# signal.strength <- signif(signal.strength, digits=3)
# tag.frac <- signif(tag.frac, digits=3)
# gene.frac <- signif(gene.frac, digits=3)
# FDR.mean.sorted <- signif(FDR.mean.sorted, digits=5)
# FDR.median.sorted <- signif(FDR.median.sorted, digits=5)
# glob.p.vals.sorted <- signif(glob.p.vals.sorted, digits=5)
report <- DataFrame(gs.names, size.G, Obs.ES, Obs.ES.norm, p.vals)
# p.vals[,1], FDR.mean.sorted, p.vals[,2], tag.frac,
# gene.frac, signal.strength, FDR.median.sorted, glob.p.vals.sorted))
colnames(report) <- c("GS", "SIZE", "ES", "NES", configEBrowser("PVAL.COL"))#,
rownames(report) <- NULL
return(report)
# "FDR q-val", "FWER p-val", "Tag \\%", "Gene \\%", "Signal",
# "FDR (median)", "glob.p.val")
# report2 <- report[order(Obs.ES.norm, decreasing=TRUE),]
# report3 <- report[order(Obs.ES.norm, decreasing=FALSE),]
# phen1.rows <- sum(Obs.ES.norm >= 0)
# phen2.rows <- length(Obs.ES.norm) - phen1.rows
# report.phen1 <- report2[seq_len(phen1.rows),]
# report.phen2 <- report3[seq_len(phen2.rows),]
# if (output.directory != "")
# {
# if (phen1.rows > 0)
# {
# filename <- paste(output.directory, doc.string,
# ".SUMMARY.RESULTS.REPORT.", phen1,".txt", sep="", collapse="")
# write.table(report.phen1,
# file = filename, quote=FALSE, row.names=FALSE, sep = "\t")
# }
# if (phen2.rows > 0) {
# filename <- paste(output.directory, doc.string,
# ".SUMMARY.RESULTS.REPORT.", phen2,".txt", sep="", collapse="")
# write.table(report.phen2,
# file = filename, quote=FALSE, row.names=FALSE, sep = "\t")
# }
# }
#
# return(list(report1 = report.phen1, report2 = report.phen2))
} # end of definition of GSEA.analysis
# Auxiliary functions and definitions
GSEA.GeneRanking <- function(A, class.labels, gene.labels, nperm)
{
# This function ranks the genes according to the signal to noise ratio for the
# actual phenotype and also random permutations and bootstrap subsamples of both
# the observed and random phenotypes. It uses matrix operations to implement the
# signal to noise calculation in stages and achieves fast execution speed. It
# supports two types of permutations: random (unbalanced) and balanced. It also
# supports subsampling and bootstrap by using masking and multiple-count
# variables. When "fraction" is set to 1 (default) the there is no subsampling
# or boostrapping and the matrix of observed signal to noise ratios will have
# the same value for all permutations. This is wasteful but allows to support
# all the multiple options with the same code. Notice that the second matrix for
# the null distribution will still have the values for the random permutations
# (null distribution). This mode (fraction = 1.0) is the defaults, the
# recommended one and the one used in the examples.It is also the one that has
# be tested more thoroughly. The resampling and boostrapping options are
# intersting to obtain smooth estimates of the observed distribution but its is
# left for the expert user who may want to perform some sanity checks before
# trusting the code.
#
# Inputs:
# A: Matrix of gene expression values (rows are genes, columns are samples)
# class.labels: Phenotype of class disticntion of interest.
# A vector of binary labels having first the 1's and then the 0's
# gene.labels: gene labels. Vector of probe ids or
# accession numbers for the rows of the expression matrix
# nperm: Number of random permutations/bootstraps to perform
#
# Outputs:
# s2n.matrix: Matrix with random permuted or bootstraps signal to noise ratios
# (rows are genes, columns are permutations or bootstrap subsamplings)
# obs.s2n.matrix: Matrix with observed signal to noise ratios
# (rows are genes, columns are boostraps subsamplings.
# If fraction is set to 1.0 then all the columns have the same values
# order.matrix: Matrix with the orderings that will
# sort the columns of the obs.s2n.matrix in decreasing s2n order
# obs.order.matrix: Matrix with the orderings that will
# sort the columns of the s2n.matrix in decreasing s2n order
#
A <- A + 0.00000001
N <- nrow(A)
Ns <- ncol(A)
subset.mask <- reshuffled.class.labels1 <- reshuffled.class.labels2 <-
class.labels1 <- class.labels2 <- matrix(0, nrow=Ns, ncol=nperm)
order.matrix <- obs.order.matrix <- s2n.matrix <-
obs.s2n.matrix <- matrix(0, nrow = N, ncol = nperm)
#obs.gene.labels <- obs.gene.descs <-
# obs.gene.symbols <- vector(length = N, mode="character")
M1 <- M2 <- S1 <- S2 <- matrix(0, nrow = N, ncol = nperm)
C <- split(class.labels, class.labels)
class1.size <- length(C[[2]])
class2.size <- length(C[[1]])
class1.index <- seq_len(class1.size)
class2.index <- (class1.size + 1):(class1.size + class2.size)
for (r in seq_len(nperm))
{
class1.subset <- sample(class1.index, size = ceiling(class1.size))
class2.subset <- sample(class2.index, size = ceiling(class2.size))
subset.class1 <- as.integer(class1.index %in% class1.subset)
subset.class2 <- as.integer(class2.index %in% class2.subset)
subset.mask[, r] <- as.numeric(c(subset.class1, subset.class2))
fraction.class1 <- class1.size/Ns
fraction.class2 <- class2.size/Ns
# random (unbalanced) permutation
full.subset <- c(class1.subset, class2.subset)
label1.subset <- sample(full.subset, size = Ns * fraction.class1)
for (i in seq_len(Ns))
{
m1 <- sum(!is.na(match(label1.subset, i)))
m2 <- sum(!is.na(match(full.subset, i)))
reshuffled.class.labels1[i, r] <- m1
reshuffled.class.labels2[i, r] <- m2 - m1
if (i <= class1.size)
{
class.labels1[i, r] <- m2
class.labels2[i, r] <- 0
}
else
{
class.labels1[i, r] <- 0
class.labels2[i, r] <- m2
}
}
}
# compute S2N for the random permutation matrix
P <- reshuffled.class.labels1 * subset.mask
n1 <- sum(P[,1])
M1 <- A %*% P
M1 <- M1/n1
A2 <- A*A
S1 <- A2 %*% P
S1 <- S1/n1 - M1*M1
S1 <- sqrt(abs((n1/(n1-1)) * S1))
P <- reshuffled.class.labels2 * subset.mask
n2 <- sum(P[,1])
M2 <- A %*% P
M2 <- M2/n2
A2 <- A*A
S2 <- A2 %*% P
S2 <- S2/n2 - M2*M2
S2 <- sqrt(abs((n2/(n2-1)) * S2))
rm(P)
rm(A2)
# small sigma "fix" as used in GeneCluster
S2 <- ifelse(0.2*abs(M2) < S2, S2, 0.2*abs(M2))
S2 <- ifelse(S2 == 0, 0.2, S2)
S1 <- ifelse(0.2*abs(M1) < S1, S1, 0.2*abs(M1))
S1 <- ifelse(S1 == 0, 0.2, S1)
M1 <- M1 - M2
rm(M2)
S1 <- S1 + S2
rm(S2)
s2n.matrix <- M1/S1
order.matrix <- apply(s2n.matrix, 2, order, decreasing=TRUE)
# compute S2N for the "observed" permutation matrix
P <- class.labels1 * subset.mask
n1 <- sum(P[,1])
M1 <- A %*% P
M1 <- M1/n1
A2 <- A*A
S1 <- A2 %*% P
S1 <- S1/n1 - M1*M1
S1 <- sqrt(abs((n1/(n1-1)) * S1))
P <- class.labels2 * subset.mask
n2 <- sum(P[,1])
M2 <- A %*% P
M2 <- M2/n2
A2 <- A*A
S2 <- A2 %*% P
S2 <- S2/n2 - M2*M2
S2 <- sqrt(abs((n2/(n2-1)) * S2))
rm(P)
rm(A2)
# small sigma "fix" as used in GeneCluster
S2 <- ifelse(0.2*abs(M2) < S2, S2, 0.2*abs(M2))
S2 <- ifelse(S2 == 0, 0.2, S2)
S1 <- ifelse(0.2*abs(M1) < S1, S1, 0.2*abs(M1))
S1 <- ifelse(S1 == 0, 0.2, S1)
M1 <- M1 - M2
rm(M2)
S1 <- S1 + S2
rm(S2)
obs.s2n.matrix <- M1/S1
obs.order.matrix <- apply(obs.s2n.matrix, 2, order, decreasing=TRUE)
return(list(s2n.matrix = s2n.matrix,
obs.s2n.matrix = obs.s2n.matrix,
order.matrix = order.matrix,
obs.order.matrix = obs.order.matrix))
}
GSEA.EnrichmentScore <- function(
gene.list, gene.set, weighted.score.type = 1, correl.vector = NULL)
{
#
# Computes the weighted GSEA score of gene.set in gene.list.
# The weighted score type is the exponent of the correlation
# weight: 0 (unweighted = Kolmogorov-Smirnov), 1 (weighted), and 2 (over-weighted).
# When the score type is 1 or 2 it is necessary to input the correlation vector
# with the values in the same order as in the gene list.
#
# Inputs:
# gene.list: The ordered gene list
# (e.g. integers indicating the original position in the input dataset)
# gene.set: A gene set (e.g. integers indicating
# the location of those genes in the input dataset)
# weighted.score.type: Type of score:
# weight: 0 (unweighted = Kolmogorov-Smirnov),
# 1 (weighted), and 2 (over-weighted)
# correl.vector: A vector with the coorelations (e.g. signal to noise scores)
# corresponding to the genes in the gene list
#
# Outputs:
# ES: Enrichment score (real number between -1 and +1)
# arg.ES: Location in gene.list where the peak
# running enrichment occurs (peak of the "mountain")
# RES: Numerical vector containing the running
# enrichment score for all locations in the gene list
# tag.indicator: Binary vector indicating
# the location of the gene sets (1's) in the gene list
# notice that the sign is 0 (no tag) or 1 (tag)
tag.indicator <- sign(match(gene.list, gene.set, nomatch=0))
no.tag.indicator <- 1 - tag.indicator
N <- length(gene.list)
Nh <- length(gene.set)
Nm <- N - Nh
if (weighted.score.type == 0) correl.vector <- rep(1, N)
alpha <- weighted.score.type
correl.vector <- abs(correl.vector**alpha)
sum.correl.tag <- sum(correl.vector[tag.indicator == 1])
norm.tag <- 1.0 / sum.correl.tag
norm.no.tag <- 1.0 / Nm
RES <- cumsum(tag.indicator * correl.vector *
norm.tag - no.tag.indicator * norm.no.tag)
max.ES <- max(RES)
min.ES <- min(RES)
if (max.ES > -min.ES)
{
ES <- signif(max.ES, digits = 5)
arg.ES <- which.max(RES)
}
else
{
ES <- signif(min.ES, digits=5)
arg.ES <- which.min(RES)
}
return(list(ES = ES, arg.ES = arg.ES, RES = RES, indicator = tag.indicator))
}
GSEA.EnrichmentScore2 <- function(
gene.list, gene.set, weighted.score.type = 1, correl.vector = NULL)
{
#
# Computes the weighted GSEA score of gene.set in gene.list. It is the same
# calculation as in GSEA.EnrichmentScore but faster (x8) without producing the
# RES, arg.RES and tag.indicator outputs.
# This call is intended to be used to asses the enrichment of random
# permutations rather than the observed one.
# The weighted score type is the exponent of the correlation
# weight: 0 (unweighted = Kolmogorov-Smirnov), 1 (weighted), and 2 (over-weighted).
# When the score type is 1 or 2 it is necessary to input the correlation vector
# with the values in the same order as in the gene list.
#
# Inputs:
# gene.list: The ordered gene list
# (e.g. integers indicating the original position in the input dataset)
# gene.set: A gene set
# (e.g. integers indicating the location of those genes in the input dataset)
# weighted.score.type: Type of score:
# weight: 0 (unweighted = Kolmogorov-Smirnov), 1 (weighted), and 2 (over-weighted)
# correl.vector: A vector with the coorelations (e.g. signal to noise scores)
# corresponding to the genes in the gene list
#
# Outputs:
# ES: Enrichment score (real number between -1 and +1)
#
# The Broad Institute
# SOFTWARE COPYRIGHT NOTICE AGREEMENT
# This software and its documentation are copyright 2003 by the
# Broad Institute/Massachusetts Institute of Technology.
# All rights are reserved.
#
# This software is supplied without any warranty or guaranteed support
# whatsoever. Neither the Broad Institute nor MIT can be responsible for
# its use, misuse, or functionality.
N <- length(gene.list)
Nh <- length(gene.set)
Nm <- N - Nh
peak.res.vector <- valley.res.vector <-
tag.diff.vector <- vector(length=Nh, mode="numeric")
loc.vector <- vector(length=N, mode="numeric")
loc.vector[gene.list] <- seq_len(N)
tag.loc.vector <- loc.vector[gene.set]
tag.loc.vector <- sort(tag.loc.vector, decreasing =FALSE)
if (weighted.score.type == 0) tag.correl.vector <- rep(1, Nh)
else if (weighted.score.type == 1)
{
tag.correl.vector <- correl.vector[tag.loc.vector]
tag.correl.vector <- abs(tag.correl.vector)
}
else if (weighted.score.type == 2)
{
tag.correl.vector <-
correl.vector[tag.loc.vector] * correl.vector[tag.loc.vector]
tag.correl.vector <- abs(tag.correl.vector)
}
else
{
tag.correl.vector <- correl.vector[tag.loc.vector] * weighted.score.type
tag.correl.vector <- abs(tag.correl.vector)
}
norm.tag <- 1.0/sum(tag.correl.vector)
tag.correl.vector <- tag.correl.vector * norm.tag
norm.no.tag <- 1.0/Nm
tag.diff.vector[1] <- (tag.loc.vector[1] - 1)
tag.diff.vector[2:Nh] <-
tag.loc.vector[2:Nh] - tag.loc.vector[1:(Nh - 1)] - 1
tag.diff.vector <- tag.diff.vector * norm.no.tag
peak.res.vector <- cumsum(tag.correl.vector - tag.diff.vector)
valley.res.vector <- peak.res.vector - tag.correl.vector
max.ES <- max(peak.res.vector)
min.ES <- min(valley.res.vector)
ES <- signif(ifelse(max.ES > - min.ES, max.ES, min.ES), digits=5)
return(list(ES = ES))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.