Nothing
## Methods and functions related to the FSIR from Kerber.
##************************************************
##
## FSIR Kerber 1995
## the familial standardized incidence ratio.
## What do we need to calculate it:
## * affected vector: can get the cases from that.
## * the kinship matrix: setting diag(kin) <- 0, so we exclude self-self
## kinship.
## * strata: some sort of stratification of cases.
## * time in strata: related to the strata: the time each individual spend in
## strata.
## * the population incidence rate per stratum: that's really tricky! how do
## we get the population incidence if we have only the cohort available...
## sampling? that will not work, if, only with replacement... but still.
##
## Side note: what if we use the incidence ratio from the whole pedigree? the
## FSIR is anyway just calculated based on individuals from the same
## family (got a kinship value of 0 for other individuals). Such
## lambda would represent the expected number of affected
## individuals in the family given the data from the whole pedigree.
##************************************************
## Note: this function assumes that all elements are in the correct order!
## Arguments:
## * affected: 0, 1 coding, length corresponds to the phenotyped; length n.
## * kin: nxn kinship matrix. ordering has to match individuals in affected.
## * lambda: population incidence rate. numeric vector, length has to match
## the number of strata.
## * timeInStrata: ncol=length(lambda), nrow=n. has to have the same unit
## than lambda.
doFsir <- function(affected, kin, lambda, timeInStrata) {
if(missing(affected))
stop("affected missing!")
if(missing(kin))
stop("kinship matrix kin missing!")
if(missing(lambda))
stop("lambda missing!")
if(missing(timeInStrata))
stop("timeInStrata missing!")
if(length(unique(c(length(affected), nrow(kin), ncol(kin),
nrow(timeInStrata)))) != 1)
stop("Length of affected has to match the number of rows and cols of",
" kin and the number of rows of timeInStrata!")
## match names of lambda with colnames of timeInStrata:
if(is.null(names(lambda)))
stop("lambda has to be a named numeric vector with the names ",
"corresponding to the colnames of timeInStrata!")
if(is.null(colnames(timeInStrata)))
stop("timeInStrata has to be a matrix with column names corresponding ",
"to the names of argument lambda!")
if(length(lambda) != ncol(timeInStrata))
stop("length of lambda does not match number of columns of ",
"timeInStrata!")
if(!all(names(lambda) %in% colnames(timeInStrata)))
stop("names of lambda do not match with colnames of timeInStrata!")
lambda <- lambda[colnames(timeInStrata)]
## setting the diagonal of kin to 0 to avoid self-self kinship
diag(kin) <- 0
## calculate nominator of Kerber 1995 formula (4): the observed cases
## this results in a vector length affected, with 0 if the individual
## is not related to any affected.
nomi <- as.numeric(affected %*% kin)
## funny thing is the denominator that lists the expected cases.
## lambda should be a vector of length k (k=number of strata), timeInStrat
## a matrix with k columns, n rows with n being the number of individuals
## and kin a nxn matrix.
## lambda and timeInStrat should be in the same unit,
## i.e. either proportion, or proportion per person-year.
denomi <- lambda %*% t(timeInStrata) %*% kin
if(nrow(denomi) > 1)
stop("Did not get the expected single-row matrix!")
denomi <- as.numeric(denomi)
res <- nomi/denomi
names(res) <- names(affected)
##return(list(nomi=nomi, denomi=denomi))
res
}
##****************************************************************************
##
## runSimulation
##
setMethod("runSimulation",
"FAStdIncidenceRateResults", function(object, nsim=50000,
lambda=NULL, timeInStrata=NULL,
strata=NULL, ...){
if(length(trait(object)) == 0)
stop("No trait information available!")
## Check input parameter:
if(is.null(timeInStrata))
stop("Required argument 'timeInStrata' missing!")
if(is.null(lambda))
stop("Required argument 'lambda' missing!")
if(is.null(ncol(timeInStrata))){
## Special case: numeric vector, no strata.
timeInStrata <- matrix(timeInStrata, ncol=1)
colnames(timeInStrata) <- "A"
names(lambda)[1] <- "A"
}
## Start defining input arguments for the downstream function
affected <- trait(object)
kin <- kinship(object)
## Check correct dimensions etc.
if(nrow(timeInStrata) != length(affected))
stop("Number of rows of 'timeInStrata' (",
nrow(timeInStrata), ") has to match the number ",
"of individuals in the pedigree (",
length(affected), ")!")
if(ncol(timeInStrata) != length(lambda))
stop("Number of columns of 'timeInStrata' (",
ncol(timeInStrata), ") has to match the length ",
"of 'lambda' (", length(lambda), ")!")
if(any(colnames(timeInStrata) != names(lambda)))
stop("Column names of 'timeInStrata' have to match ",
"names of lambda!")
if(!is.null(strata)){
if(length(strata) != length(affected))
stop("Length of 'strata' (", length(strata), ") ",
"has to match the number of individuals in ",
"the pedigree (", length(affected), ")!")
}
object@timeInStrata <- timeInStrata
object@lambda <- lambda
## Remove entries with NAs
## trait
trait <- trait(object) # that way we ensure that we have the
## same ordering.
kin <- kinship(object)
## Just to be on the save side... ensure that the ordering of
## id/Trait matches the kin
kin <- kin[names(trait), names(trait)]
diag(kin) <- 0
## Now start subsetting the data:
message("Cleaning data set (got in total ", nrow(kin),
" individuals):")
message(" * not phenotyped individuals...", appendLF=FALSE)
## * NA in trait
nas <- is.na(trait)
if(any(nas)){
trait <- trait[!nas]
kin <- kin[!nas, !nas]
timeInStrata <- timeInStrata[!nas, , drop=FALSE]
if(!is.null(strata))
strata <- strata[!nas]
message(" ", sum(nas), " removed.")
}else{
message(" none present.")
}
## * NA in timeInStrata.
nas <- apply(timeInStrata, MARGIN=1, function(z){
any(is.na(z))
})
message(" * individuals with missing time in strata...",
appendLF=FALSE)
if(any(nas)){
trait <- trait[!nas]
kin <- kin[!nas, !nas]
timeInStrata <- timeInStrata[!nas, , drop=FALSE]
if(!is.null(strata))
strata <- strata[!nas]
message(" ", sum(nas), " removed.")
}else{
message(" none present.")
}
## * NA in strata
if(!is.null(strata)){
nas <- is.na(strata)
message(" * individuals without valid strata values...",
appendLF=FALSE)
if(any(nas)){
trait <- trait[!nas]
kin <- kin[!nas, !nas]
timeInStrata <- timeInStrata[!nas, , drop=FALSE]
strata <- strata[!nas]
message(" ", sum(nas), " removed.")
}else{
message(" none present.")
}
}
## Anyway removing singletons here, since they result in NA values
message(" * singletons (also caused by previous subsetting)...",
appendLF=FALSE)
## * Not related, i.e. individuals with a kinship sum of 0
nas <- colSums(kin) == 0
if(any(nas)){
trait <- trait[!nas]
kin <- kin[!nas, !nas]
timeInStrata <- timeInStrata[!nas, , drop=FALSE]
if(!is.null(strata))
strata <- strata[!nas]
message(" ", sum(nas), " removed.")
}else{
message(" none present.")
}
message("Done")
## OK, now run the test...
Sim <- doFsirSimulation(affected=trait, kin=kin, lambda=lambda,
timeInStrata=timeInStrata,
nsim=nsim, strata=strata, ...)
fsirs <- Sim$fsir
allFsirs <- rep(NA, length(object$id))
names(allFsirs) <- object$id
idx <- match(names(fsirs), object$id)
allFsirs[idx] <- fsirs
allPvals <- rep(NA, length(object$id))
names(allPvals) <- object$id
allPvals[idx] <- Sim$pvalue
if(length(Sim$expDensity) > 0){
allExps <- vector("list", length(object$id))
names(allExps) <- object$id
allExps[idx] <- Sim$expDensity
Res <- list(fsir=allFsirs, pvalue=allPvals, expDensity=allExps)
}else{
Res <- list(fsir=allFsirs, pvalue=allPvals)
}
object@sim <- Res
object@nsim <- nsim
return(object)
})
##****************************************************************************
##
## FSIR along with Monte Carlo simulations to
## estimate significances.
## We are NOT checking for NAs here, so that has to be done upstream!
## Also, we assume that everything is in the right order.
##
## lowMem: if TRUE a less memory demanding code is run; density information
## is then however not available.
##****************************************************************************
doFsirSimulation <- function(affected, kin, lambda, timeInStrata,
nsim=50000, strata=NULL, lowMem=FALSE){
if(missing(affected))
stop("affected missing!")
if(missing(kin))
stop("kinship matrix kin missing!")
if(missing(lambda))
stop("lambda missing!")
if(missing(timeInStrata))
stop("timeInStrata missing!")
if(length(unique(c(length(affected), nrow(kin), ncol(kin),
nrow(timeInStrata)))) != 1)
stop("Length of affected has to match the number of rows ",
"and cols of kin and the number of rows of timeInStrata!")
if(!is.null(strata)){
if(length(strata) != length(affected))
stop("Length of arguments 'strata' and 'affected' have to match!")
}
## match names of lambda with colnames of timeInStrata:
if(is.null(names(lambda)))
stop("lambda has to be a named numeric vector with the names",
" corresponding to the colnames of timeInStrata!")
if(is.null(colnames(timeInStrata)))
stop("timeInStrata has to be a matrix with column names",
" corresponding to the names of argument lambda!")
if(length(lambda) != ncol(timeInStrata))
stop("length of lambda does not match number of columns of ",
"timeInStrata!")
if(!all(names(lambda) %in% colnames(timeInStrata)))
stop("names of lambda do not match with colnames of timeInStrata!")
lambda <- lambda[colnames(timeInStrata)]
## setting the diagonal of kin to 0 to avoid self-self kinship
diag(kin) <- 0
## calculate nominator of Kerber 1995 formula (4): the observed cases
## this results in a vector length affected, with 0 if the individual is not
## related to any affected.
nomi <- as.numeric(affected %*% kin)
## funny thing is the denominator that lists the expected cases.
## lambda should be a vector of length k (k=number of strata), timeInStrat a
## matrix with k columns, n rows with n being the number of individuals and
## kin a nxn matrix. lambda and timeInStrat should be in the same unit,
## i.e. either proportion, or proportion per person-year.
denomi <- lambda %*% t(timeInStrata) %*% kin
if(nrow(denomi) > 1)
stop("Did not get the expected single-row matrix!")
denomi <- as.numeric(denomi)
obsFsir <- nomi/denomi
names(obsFsir) <- names(affected)
##
## Performing the simulation.
sampleFrom <- 1:length(affected)
nAff <- sum(affected) ## affected has to be encoded 1,0 or TRUE,FALSE
nAll <- length(affected)
if(lowMem){
largerEqual <- rep(0, nAll)
if(is.null(strata)){
for(i in 1:nsim){
simIdx <- sample(sampleFrom, nAff)
simaffs <- rep(0, nAll)
simaffs[simIdx] <- 1
tmp <- as.vector((simaffs %*% kin) / denomi)
tmp[is.na(tmp)] <- 0
largerEqual <- largerEqual + (tmp >= obsFsir)
}
}else{
affStrataCounts <- table(strata[affected > 0])
affStrataCounts <- affStrataCounts[affStrataCounts > 0]
for(i in 1:nsim){
simIdx <- stratsample(strata, counts=affStrataCounts)
simaffs <- rep(0, nAll)
simaffs[simIdx] <- 1
tmp <- as.vector((simaffs %*% kin) / denomi)
tmp[is.na(tmp)] <- 0
largerEqual <- largerEqual + (tmp >= obsFsir)
}
}
PVals <- largerEqual/nsim
denses <- NULL
}else{
## memory demanding and "slower" version
if(is.null(strata)){
SimFsir <- lapply(1:nsim, function(z){
simIdx <- sample(sampleFrom, nAff)
simaffs <- rep(0, nAll)
simaffs[simIdx] <- 1
return(as.vector((simaffs %*% kin) / denomi))
})
}else{
affStrataCounts <- table(strata[affected > 0])
affStrataCounts <- affStrataCounts[affStrataCounts > 0]
SimFsir <- lapply(1:nsim, function(z){
simIdx <- stratsample(strata, counts=affStrataCounts)
simaffs <- rep(0, nAll)
simaffs[simIdx] <- 1
return(as.vector((simaffs %*% kin) / denomi))
})
}
SimFsir <- do.call(cbind, SimFsir)
PVals <- rowSums(SimFsir >= obsFsir)/nsim
denses <- apply(SimFsir, MARGIN=1, density)
}
return(list(fsir=obsFsir, pvalue=PVals, expDensity=denses))
}
## convert a factor to a matrix, levels
factor2matrix <- function(x){
if(class(x)!="factor")
x <- factor(x)
Ls <- lapply(levels(x), function(z){
return(as.numeric(x == z))
})
Mat <- do.call(cbind, Ls)
colnames(Mat) <- levels(x)
if(!is.null(names(x)))
rownames(Mat) <- names(x)
return(Mat)
}
##****************************************************************************
##
## show
##
setMethod("show", "FAStdIncidenceRateResults", function(object){
callNextMethod()
cat(paste0("Result info:\n"))
if(length(object@sim) > 0){
cat(paste0(" * Mean familial standardized incidence ratio: ",
format(mean(object@sim$fsir, na.rm=TRUE), digits=2), ".\n"))
cat(paste0(" * lambda: \n"))
Lam <- object@lambda
for(i in 1:length(lambda)){
cat(paste0(" - ", names(lambda)[i], ": ", lambda[i], "\n"))
}
cat(paste0())
}else{
cat(" * No simulation results available yet.\n")
}
cat(paste0(" * Number of simulations: ", object@nsim, ".\n"))
})
##****************************************************************************
##
## plotRes
##
setMethod("plotRes", "FAStdIncidenceRateResults", function(object,
id=NULL,
family=NULL,
addLegend=TRUE,
type="density", ...){
type <- match.arg(type, c("density", "hist"))
if(type == "hist")
stop("Type 'hist' is not supported (yet).")
if(length(object@sim) == 0)
stop("No analysis performed yet!")
if(is.null(id))
stop("Argument 'id' is required.")
id <- as.character(id)
if(!is.null(family))
stop("Argument 'family' is not supported.")
## check if id is valid
fsirs <- object$fsir
if(!any(names(fsirs) == id))
stop("Individual with id ", id, " not found ",
"in the pedigree.")
obsFsir <- fsirs[id]
if(is.na(obsFsir))
stop("No Familial Standardized Incidence Rate (FSIR) ",
"calculated for individual ", id, ".")
fam <- family(object, id=id)[1, "family"]
if(type == "density"){
## Let's see whether we have the required information available.
if(!any(names(object@sim) == "expDensity"))
stop("Distribution of familial standardiced incidence rates ",
"from the simulation runs not available. You need to",
" run 'runSimulation' without optional argument",
" 'lowMem=TRUE'.")
dens <- object@sim$expDensity[[id]]
XL <- range(c(range(dens$x, na.rm=TRUE), obsFsir), na.rm=TRUE)
plot(dens, main=paste0("Individual: ", id, ", family: ",
fam),
xlab="Familial standardized incidence rate",
type="h", lwd=3, col="lightgrey", xlim=XL)
points(dens, col="grey", type="l", lwd=2)
}
Blue <- "#377EB8"
abline(v=obsFsir, col=Blue)
if(addLegend){
legend("topright",
legend=c(paste0("fsir : ", format(obsFsir, digits=2)),
paste0("p-value : ", format(object@sim$pvalue[id],
digits=2))
))
}
})
##****************************************************************************
##
## plotPed
##
## the plot ped can be done for individuals and for families. In essence we
## are just calling the plotPed from the FAData object, eventually highlighting
## the individual and providing the FSIR as numeric values below the id.
setMethod("plotPed", "FAStdIncidenceRateResults", function(object, id=NULL,
family=NULL,
filename=NULL,
device="plot",
only.phenotyped=FALSE,
...) {
if(is.null(id) & is.null(family))
stop("Either id or family has to be provided!")
if(length(object@sim) == 0){
## Means we don't have any results...
FSIR <- rep(NA, length(object$id))
}else{
FSIR <- object@sim$fsir
}
callNextMethod(object=object, id=id, family=family, filename=filename,
device=device, label1=FSIR, proband.id=id,
only.phenotyped=only.phenotyped, ...)
})
##****************************************************************************
##
## result
##
setMethod("result", "FAStdIncidenceRateResults", function(object, method="BH"){
method <- match.arg(method, p.adjust.methods)
Trait <- trait(object, na.rm=TRUE)
TraitName <- object@traitname
if(length(TraitName) == 0)
TraitName <- NA
if(length(object@sim) == 0){
MyRes <- data.frame(trait_name=TraitName,
total_phenotyped=length(Trait),
total_affected=sum(Trait!=0),
total_tested=0,
id=NA,
family=NA,
fsir=NA,
pvalue=NA,
padj=NA,
check.names=FALSE, stringsAsFactors=FALSE)
warning("No simulation data available! Please run a simulation ",
"using the 'runSimulation' method on this, or the ",
"'fsirTest' on a 'FAData' object.")
return(MyRes)
}
nind <- length(object$id)
MyRes <- data.frame(trait_name=rep(TraitName, nind),
total_phenotyped=rep(length(Trait), nind),
total_affected=rep(sum(Trait!=0), nind),
total_tested=rep(sum(!is.na(object@sim$fsir)), nind),
id=as.character(object$id),
family=as.character(object$family),
fsir=object@sim$fsir,
pvalue=object@sim$pvalue,
padj=p.adjust(object@sim$pvalue, method=method),
check.names=FALSE, stringsAsFactors=FALSE)
MyRes <- MyRes[order(MyRes$pvalue, -MyRes$fsir), ]
rownames(MyRes) <- as.character(MyRes$id)
return(MyRes)
})
##****************************************************************************
##
## fsir getter method.
##
setMethod("fsir", "FAStdIncidenceRateResults",
function(object, ...){
if(!length(object@sim))
return(NULL)
return(object@sim$fsir)
})
##****************************************************************************
##
## lambda getter method.
##
setMethod("lambda", "FAStdIncidenceRateResults",
function(object, ...){
return(object@lambda)
})
##****************************************************************************
##
## $ getter method.
##
setMethod("$", "FAStdIncidenceRateResults", function(x, name){
if(name == "fsir" | name == "lambda" | name == "pvalue"
| name == "timeInStrata"){
## extract local stuff
if(length(x@sim) == 0){
warning("No calculation result available!")
return(NULL)
}
if(name == "fsir")
return(fsir(x))
if(name == "lambda")
return(lambda(x))
if(name == "pvalue")
return(x@sim$pvalue)
if(name == "timeInStrata")
return(timeInStrata(x))
}else{
callNextMethod()
}
})
##****************************************************************************
##
## [ method.
##
setMethod("[", "FAStdIncidenceRateResults", function(x, i, j, ..., drop){
stop("Subsetting of a FAStdIncidenceRateResults object is not supported!")
})
##****************************************************************************
##
## timeInStrata getter/setter method.
##
setMethod("timeInStrata", "FAStdIncidenceRateResults",
function(object){
## we're also checking that timeAtRisk, stored in its internal
## slot has the correct length!
if(nrow(object@timeInStrata)==0)
return(object@timeInStrata)
if(nrow(object@timeInStrata) != length(object$id))
stop("Length of 'timeInStrata' does not match the ",
"number of individuals in ",
"the pedigree!")
return(object@timeInStrata)
})
##****************************************************************************
##
## resultForId.
##
## extract data for an individual.
setMethod("resultForId", "FAStdIncidenceRateResults", function(object, id=NULL){
if(is.null(id))
stop("'id' has to be provided!")
## check if id is there.
if(!any(object$id == id))
stop("Individual with id ", id, " not in the pedigree.")
## check if we have any results:
if(length(object@sim) == 0)
stop("No simulation results available. Please run 'runSimulation' first.")
idx <- which(object$id == id)
return(list(id=id, fsir=object$fsir[id], pvalue=object@sim$pvalue[idx],
timeInStrata=object@timeInStrata[idx, ],
lambda=object@lambda))
})
##****************************************************************************
##
## trait<-
##
## Calling the trait replecement method from FAResult and in addition
## reset the simulation result.
setReplaceMethod("trait", "FAStdIncidenceRateResults", function(object, value){
object <- callNextMethod()
## reset the result
object@sim <- list()
object@nsim <- 0
object@traitname <- character()
return(object)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.