Nothing
GenomicMatrix <- R6Class("GenomicMatrix",
public = list (
initialize = function(){
},
hdf.matrices.root = "Base.matrices",
hdf.ranges.root = "Base.ranges",
hdf.metadata.root = "Base.metadata",
metadata.chrom.dataset = "chrominfo",
hdf.matrix.name = "matrix",
hdf.matrix.coverage = "chr1_bin_coverage",
hdf.matrix.coverage.t = "chr2_bin_coverage",
hdf.matrix.rowSums = "chr1_row_sums",
hdf.matrix.colSums = "chr2_col_sums",
hdf.matrix.sparsity = "sparsity",
hdf.bintable.ranges.group = "Bintable",
hdf.ranges.dataset.name = "ranges",
hdf.ranges.offset.name = "offset",
hdf.ranges.chr.name = "chr.names",
hdf.ranges.lengths.name = "lengths",
mcool.resolutions.name = "resolutions",
cache.basename = "HiCBricks",
cache.metacol.cols = "HiCBricks_MetaInfo",
cache.metacol.dbid = "rid",
cache.metacol.hashname = "hashname",
cache.metacol.dirpath = "dirpath",
brick.extension = "brick",
Max.vector.size=104857600,
brick.config.name = "HiCBricks_builder_config.json",
mcool.available.normalisations = function(){
Names <- c("Knight-Ruitz","Vanilla-coverage",
"Vanilla-coverage-square-root","Iterative-Correction")
Vector <- c("KR","VC","VC_SQRT","weight")
names(Vector) <- Names
return(Vector)
},
genomic.ranges.protected.names = c("seqnames", "strand", "seqlevels",
"seqlengths", "isCircular", "start", "end", "width", "element"),
genomic.ranges.metadata.functions = function(name = NULL){
transformlist <- list(
"strand" = strand,
"seqlevels" = seqlevels,
"seqlengths" = seqlengths,
"width" = width)
if(is.null(name)){
return(names(transformlist))
}
return(transformlist[[name]])
},
hdf.matrix.meta.cols = function(){
Temp <- c(self$hdf.matrix.coverage,
self$hdf.matrix.coverage.t,
self$hdf.matrix.rowSums,
self$hdf.matrix.colSums,
self$hdf.matrix.sparsity)
names(Temp) <- c("chr1_bin_coverage",
"chr2_bin_coverage",
"chr1_row_sums",
"chr2_col_sums",
"sparse")
return(Temp)
},
hdf.ranges.protected.names = function(){
Protect <- c(self$hdf.ranges.dataset.name,
self$hdf.ranges.lengths.name,
self$hdf.ranges.chr.name, self$hdf.ranges.offset.name)
return(Protect)
},
matrices.chrom.attributes = c("filename","min","max","sparsity",
"distance","done"),
matrices.chrom.attributes.dtype = c("character","double","double",
"integer","integer","integer"),
matrices.chrom.attributes.fun.cast = function(type = NULL){
as.logical.as.integer = function(x){
as.logical(as.integer(x))
}
TypeList <- list("filename" = as.character,
"min" = as.double,
"max" = as.double,
"sparsity" = as.logical.as.integer,
"distance" = as.integer,
"done" = as.logical.as.integer)
return(TypeList[[type]])
},
matrices.chrom.attributes.dims = list(1,1,1,1,1,1),
bintable.attributes = c("stranded","names"),
ranges.bintable.dataset = "bintable",
GeneralFileSeparator = "_",
Ranges.separator=":",
NonStrandedColNames=c("chr","start","end"),
TerrificNumberOfHiCFormats = c("NxNMatrix","PAIRIX","Cooler","HOMER",
"CustomTable","AggregateFragments"),
GetRootFolders = function() {
Folders <- c(self$hdf.matrices.root,
self$hdf.ranges.root, self$hdf.metadata.root)
names(Folders) <- c('matrices','ranges','metadata')
return(Folders)
},
GetBaseRangesFolders = function(){
Folders <- c(self$hdf.bintable.ranges.group)
names(Folders) <- c('Bintable')
return(Folders)
},
mcool.bintable.keys = function(version = NULL){
if(version <= 1){
return(c("bins","chrom_id","start","end"))
}
if(version >= 2){
return(c("bins","chrom","start","end"))
}
},
mcool.scaffold.keys = function(version = NULL){
if(version < 1){
return(c("scaffolds","length","name"))
}
if(version >= 2){
return(c("chroms","length","name"))
}
},
mcool.matrix.keys = function(version = NULL){
if(version <1){
return(c("matrix","bin1_id","bin2_id","count"))
}
if(version >=2){
return(c("pixels","bin1_id","bin2_id","count"))
}
},
mcool.index.keys = function(){
return(c("indexes","bin1_offset","chrom_offset"))
},
Configurator_JSON_headers_names = c("file_prefix",
"project_directory", "experiment_name", "resolutions",
"chromosomes", "lengths", "queues"),
Configurator_JSON_matrix_names = c("chrom1",
"chrom2", "resolution", "dimensions", "lengths",
"mat_type", "filename")
),
private = list(
Attribute.List=NA,
File.List=NA,
RangesObjects=NA,
Ranges.Keys=NA,
Ranges.Col.Keys=NA,
WhichStarter=NA,
Working.Dir=NA,
Working.File=NA,
HDF.Connection=NA,
ComputeSparsity=FALSE,
Sparsity.compute.bins=NA,
Matrix.range=NA,
Num.lines=1,
hdf.root.folders=c("matrices","base.ranges.tables"),
Protected.Ranges.Keys=c("Bintable"),
Bintable.Key = "Bintable",
Matrice.done = NA
)
)
._Check_numeric <- function(x){
return(is.numeric(x) | is.integer(x))
}
._format_by_charlen <- function(string = NULL, length = 80){
Space_locations <- str_locate_all(pattern = " ", paste(string," "))[[1]]
Space_locations_ends <- Space_locations[,"end"]
Binned_locations <- rle(ceiling(Space_locations_ends/length))
Break_loc_end <- Space_locations_ends[cumsum(Binned_locations$lengths)]
Break_loc_start <- 1
if(length(Break_loc_end) > 1){
Break_loc_start <- c(Break_loc_start,
Break_loc_end[-length(Break_loc_end)]+1)
}
Trimmed_string <- str_trim(str_sub(string,
start = Break_loc_start,
end = Break_loc_end))
Finished_message <- paste(Trimmed_string, collapse = "\n")
}
._GenerateRandomName_ <- function(seed = NULL,
algo = c("sha1", "crc32", "md5", "sha256",
"xxhash32", "xxhash64", "murmur32")){
if(is.null(seed)){
seed <- format(Sys.time(),"%Y-%m-%d_%H-%M-%S")
}
algo <- match.arg(algo)
HashString <- digest(seed, algo)
return(HashString)
}
._Get_Brick_hashname <- function(Brick = NULL){
Filename <- basename(Brick)
Dir.path <- normalizePath(dirname(Brick))
Brick.path <- file.path(Dir.path,Filename)
Tracked_name <- ._GenerateRandomName_(Brick.path)
return(Tracked_name)
}
._Do_on_vector_PercentGTZero_ = function(x){
x[is.na(x) | is.infinite(x)] <- 0
LengthOfRow <- length(x)
LengthOfGTZero <- length(x[x!=0])
Fraction <- LengthOfGTZero/LengthOfRow
return(Fraction)
}
._Do_on_vector_ComputeRowSums_ = function(x){
x[is.na(x) | is.infinite(x)] <- 0
return(sum(x))
}
._Do_on_vector_ComputeMinMax_ = function(x){
x[is.na(x) | is.infinite(x)] <- 0
return(c(min(x),max(x)))
}
._Do_on_vector_SparsityIndex_ = function(x=NULL,index=NULL,
sparsity.bins = NULL){
x[is.na(x) | is.infinite(x)] <- 0
Range <- (index-sparsity.bins):(index+sparsity.bins)
Range <- Range[Range>0 & Range<length(x)]
Rows <- x[Range]
return(length(Rows[Rows!=0])/length(Rows))
}
._Brick_Get_Something_ <- function(Group.path = NULL, Brick = NULL,
Name = NULL, Index = NULL, Start = NULL, Stride = NULL, Count = NULL,
return.what = "group_handle"){
Reference.object <- GenomicMatrix$new()
Group.Handle <- ReturnH5Handler(Path = Group.path, File = Brick)
if(return.what == "group_handle"){
return(Group.Handle)
}
if(is.null(Name)){
stop("Name cannot be NULL\n")
}
if(return.what == "dataset_handle"){
Dataset.Handle <- H5Dopen(name = Name, h5loc = Group.Handle)
H5Gclose(Group.Handle)
return(Dataset.Handle)
}
if(return.what == "data"){
Dataset <- h5read(name = Name, file = Group.Handle,
index = Index, start = Start,
stride = Stride, count = Count, callGeneric = FALSE)
H5Gclose(Group.Handle)
return(Dataset)
}
}
._Brick_Put_Something_ <- function(Group.path = NULL, Brick = NULL,
Name = NULL, data = NULL, Index = NULL, Start = NULL, Stride = NULL,
Count = NULL){
Reference.object <- GenomicMatrix$new()
Group.handler <- ._Brick_Get_Something_(Group.path = Group.path,
Brick = Brick, Name = Name, return.what = "group_handle")
h5writeDataset(obj=data, h5loc=Group.handler, name=Name,
index=Index, start = Start, stride = Stride, count = Count)
H5Gclose(Group.handler)
}
._Brick_do_on_ComplexSelection_ <- function(Group.path = NULL, Brick = NULL,
Name = NULL, Start.list = NULL, Stride.list = NULL, Count.list = NULL,
Data = NULL, Brick.list = NULL, do.what = "fetch"){
ListOfArgs <- list(Start.list,Stride.list,Count.list,Brick.list)
if(any(vapply(ListOfArgs,!is.list,TRUE))){
stop("Start, Stride, Count, Brick must be of type list.\n")
}
if(unique(vapply(ListOfArgs,length,1))!=1){
stop("Start, Stride, Count, Brick must have same length.\n")
}
if(!is.vector(Data)){
stop("Data should be a vector, when working with ",
"Start, Stride, Count, Brick.\n")
}
}
._Brick_WriteDataFrame_ <- function(Brick = NULL, Path = NULL, name = NULL,
object = NULL){
if(!(length(c(Brick,Path,name,object))>=4)){
stop("All arguments are required!")
}
Brick.handler <- ._Brick_Get_Something_(Group.path = Path, Brick = Brick,
Name = name, return.what = "group_handle")
h5writeDataset.data.frame(h5loc = Brick.handler,
obj = object,
name = name)
H5Gclose(Brick.handler)
}
._Brick_WriteArray_ <- function(Brick = NULL, Path = NULL, name = NULL,
object = NULL){
if(!(length(c(Brick,Path,name,object))>=4)){
stop("All arguments are required!")
}
Brick.handler <- ._Brick_Get_Something_(Group.path = Path, Brick = Brick,
Name = name, return.what = "group_handle")
h5writeDataset.array(h5loc = Brick.handler,
obj = object,
name = name)
H5Gclose(Brick.handler)
}
._Brick_Add_Ranges_ = function(Group.path = NULL, Brick = NULL, name = NULL,
ranges.df = NULL, mcol.list = NULL){
Reference.object <- GenomicMatrix$new()
ChrOffsetCols <- Reference.object$hdf.ranges.protected.names()
Fltr <- !(ChrOffsetCols %in% Reference.object$hdf.ranges.dataset.name)
ChrOffsetCols <- ChrOffsetCols[Fltr]
if(any(!(ChrOffsetCols %in% names(mcol.list)))) {
Chrom.lengths <- get_chrom_info(bin.table = ranges.df,
FUN = length, col.name = 'chr')
Chrom.sizes <- get_chrom_info(bin.table = ranges.df,
FUN = max, col.name = 'end')
Chrom.info.df <- data.frame(chr = names(Chrom.lengths),
nrow = as.vector(Chrom.lengths),
size = as.vector(Chrom.sizes),stringsAsFactors = FALSE)
CumSums <- cumsum(Chrom.info.df[,"nrow"])
Starts <- c(1,CumSums[-length(CumSums)]+1)
Temp.list <- list(
Starts,
Chrom.info.df[,"nrow"],
Chrom.info.df[,"chr"]
)
names(Temp.list) <- c(Reference.object$hdf.ranges.offset.name,
Reference.object$hdf.ranges.lengths.name,
Reference.object$hdf.ranges.chr.name)
mcol.list <- c(mcol.list,Temp.list)
}
CreateGroups(Group.path = Group.path, File = Brick)
._Brick_WriteDataFrame_(Brick = Brick, Path = Group.path,
name = Reference.object$hdf.ranges.dataset.name,
object = ranges.df)
if(is.null(names(mcol.list))){
stop("mcol.list must be a named list!\n")
}
for (i in seq_along(mcol.list)) {
m.name <- names(mcol.list[i])
MCol <- mcol.list[[i]]
._Brick_WriteArray_(Brick = Brick, Path = Group.path,
name = m.name, object = MCol)
}
}
._FindLineNumbers_ = function(Row.len=NULL,Col.len=NULL){
Reference.object <- GenomicMatrix$new()
pixel.mem <- 48
row.pixel.mem <- pixel.mem * Col.len
Batch.size <- floor(Reference.object$Max.vector.size/row.pixel.mem)
Batch.size[Batch.size<1] <- 1
return(Batch.size)
}
._Do_rbind_on_matrices_of_different_sizes_ <- function(Matrix.top = NULL,
Matrix.bottom = NULL, row.length = NULL, col.length = NULL,
top.coords = NULL, bottom.coords = NULL){
if(is.null(Matrix.top)){
return(Matrix.bottom)
}
if(bottom.coords[2] != top.coords[2]){
Makeup.col <- bottom.coords[2] - top.coords[2]
Matrix.top <- cbind(Matrix.top,matrix(NA,
nrow = nrow(Matrix.top), ncol = Makeup.col))
}
if(bottom.coords[1] != top.coords[1]){
Makeup.col <- bottom.coords[1] - top.coords[1]
Matrix.bottom <- cbind(matrix(NA,
nrow = nrow(Matrix.bottom),
ncol = Makeup.col),Matrix.bottom)
}
Matrix.return <- rbind(Matrix.top,Matrix.bottom)
return(Matrix.return)
}
.create_file_connection = function(Filename=NULL,mode="r"){
if(grepl('$/.gz',Filename)){
connection=gzfile(Filename,open=mode)
}else if(grepl('$/.bz2',Filename)){
connection=bzfile(Filename,open=mode)
}else {
connection=file(Filename,mode)
}
return(connection)
}
._Compute_various_matrix_metrics <- function(Matrix = NULL,
compute.sparsity=FALSE, sparsity.bins = 100, range = NULL,
distance = NULL, diag.position.start = NULL){
sparsity.bins <- ifelse(sparsity.bins < distance, sparsity.bins, distance)
Bin.coverage <- vapply(seq_len(nrow(Matrix)),function(x){
Vec.sub <- Matrix[x,]
._Do_on_vector_PercentGTZero_(Vec.sub)
},1)
Row.sums <- vapply(seq_len(nrow(Matrix)),function(x){
Vec.sub <- Matrix[x,]
._Do_on_vector_ComputeRowSums_(Vec.sub)
},1)
if(compute.sparsity){
Sparsity.Index <- vapply(seq_len(nrow(Matrix)),function(x){
Vec.sub <- Matrix[x,]
sparsity.bin.idexes <- sparsity.bins
._Do_on_vector_SparsityIndex_(x=Vec.sub,
index=diag.position.start + (x - 1),
sparsity.bins = sparsity.bins)
},1)
}else{
Sparsity.Index <- NULL
}
Row.extent <- ._Do_on_vector_ComputeMinMax_(Matrix)
if(range[1] > Row.extent[1] | is.na(range[1])) {
range[1] <- Row.extent[1]
}
if(range[2] < Row.extent[2] | is.na(range[2])){
range[2] <- Row.extent[2]
}
A.list <- list("bin.cov" = Bin.coverage, "row.sum" = Row.sums,
"sparsity" = Sparsity.Index, "extent" = range)
return(A.list)
}
._Compute_various_col_matrix_metrics <- function(Matrix = NULL,
metrics.list){
Matrix[is.na(Matrix) | is.infinite(Matrix)] <- 0
metrics.list[["bin.coverage"]] <-
metrics.list[["bin.coverage"]] + colSums(Matrix > 0)
metrics.list[["col.sums"]] <- metrics.list[["col.sums"]] +
colSums(Matrix)
return(metrics.list)
}
humanize_size <- function(x){
Size <- x/1024
if(Size < 1){
return(paste(x,"bytes"))
}
Size <- x/1024/1024
if(Size < 1){
return(paste(round(x/1024,2),"KB"))
}
Size <- x/1024/1024/1024
if(Size < 1){
return(paste(round(x/1024/1024,2),"MB"))
}
return(paste(round(x/1024/1024/1024,2),"GB"))
}
._Process_matrix_by_distance <- function(Brick = NULL, Matrix.file = NULL,
delim = NULL, Group.path = NULL, chr1.len = NULL, chr2.len = NULL,
num.rows = 2000, distance = NULL, is.sparse = NULL,
compute.sparsity = NULL, sparsity.bins = 100){
Reference.object <- GenomicMatrix$new()
if(is.sparse){
Sparsity.bins = sparsity.bins
}
Handler <- .create_file_connection(Filename = Matrix.file, mode = "r")
Start.row <- 1
Start.col <- 1
Row.Offset <- 0
Col.Offset <- 0
Path.to.file <- Brick
Matrix.range <- c(NA,NA)
if(chr1.len <= num.rows){
num.rows <- chr1.len
}
Bin.coverage <- NULL
Row.sums <- NULL
Sparsity.Index <- NULL
Matrix <- NULL
i <- 1
while(i<=chr1.len) {
Col.upper.limit <- ifelse((i + distance) > chr2.len,
chr2.len, i + distance)
Col.lower.limit <- ifelse((i - distance) <= 0, 1, i - distance)
if(is.null(Matrix)){
Start.col <- Col.lower.limit
Col.Offset <- Col.lower.limit - 1
num.row.upper.limit <- ifelse((i + num.rows + distance) > chr2.len,
chr2.len, i + num.rows + distance)
Matrix <- matrix(data = 0, nrow = num.rows,
ncol = (num.row.upper.limit - Col.lower.limit + 1))
}
Vector <- scan(file=Handler, what=double(), sep=delim,
nlines=1, quiet=TRUE)
Row.loc <- (i - Row.Offset)
Col.loc <- c((Col.lower.limit-Col.Offset):(Col.upper.limit-Col.Offset))
Matrix[Row.loc, Col.loc] <- Vector[Col.lower.limit:Col.upper.limit]
if((i - Row.Offset) == num.rows){
Start <- c(Start.row,Start.col)
Stride <- c(1,1)
Count <- c(nrow(Matrix),ncol(Matrix))
Metrics.list <- ._Compute_various_matrix_metrics(Matrix = Matrix,
compute.sparsity = compute.sparsity,
sparsity.bins = sparsity.bins, range = Matrix.range,
distance = distance, diag.position.start = i - Col.Offset)
Matrix.range <- Metrics.list[["extent"]]
Bin.coverage <- c(Bin.coverage,Metrics.list[["bin.cov"]])
Row.sums <- c(Row.sums,Metrics.list[["row.sum"]])
Sparsity.Index <- c(Sparsity.Index,Metrics.list[["sparsity"]])
message(paste("Inserting Data at location:",
paste(Start[1],", ",Start[2],sep = "")))
message("Data length: ",Count[1],"\n")
._Brick_Put_Something_(Group.path=Group.path, Brick = Brick,
Name = Reference.object$hdf.matrix.name,
data = Matrix, Start = Start, Stride = Stride, Count = Count)
Start.row <- Start.row + Count[1]
Row.Offset <- Row.Offset + num.rows
Object.size <- object.size(Matrix)
Matrix <- NULL
num.rows <- ifelse((i + num.rows) >= chr1.len,
chr1.len - i, num.rows)
message(paste("Loaded",humanize_size(Object.size),"of data..."))
}
i<-i+1
}
close(Handler)
._Brick_WriteArray_(Brick = Brick,
Path = Group.path,
name = Reference.object$hdf.matrix.rowSums,
object = Row.sums)
._Brick_WriteArray_(Brick = Brick,
Path = Group.path,
name = Reference.object$hdf.matrix.colSums,
object = Row.sums)
._Brick_WriteArray_(Brick = Brick,
Path = Group.path,
name = Reference.object$hdf.matrix.coverage,
object = Bin.coverage)
._Brick_WriteArray_(Brick = Brick,
Path = Group.path,
name = Reference.object$hdf.matrix.coverage.t,
object = Bin.coverage)
if(compute.sparsity){
._Brick_WriteArray_(Brick = Brick, Path = Group.path,
name = Reference.object$hdf.matrix.sparsity,
object = Sparsity.Index)
}
Attributes <- Reference.object$matrices.chrom.attributes
Attr.vals <- c(basename(Matrix.file),as.double(Matrix.range),
as.integer(is.sparse),
as.integer(distance),
as.integer(TRUE))
WriteAttributes(Path = Group.path,
File = Brick,
Attributes = Attributes,
values = Attr.vals, on = "group")
return(TRUE)
}
._ProcessMatrix_ <- function(Brick = NULL, Matrix.file = NULL, delim = NULL,
Group.path = NULL, chr1.len = NULL, chr2.len = NULL, num.rows = 2000,
is.sparse = NULL, compute.sparsity = NULL, distance = NULL,
sparsity.bins = 100){
Reference.object <- GenomicMatrix$new()
if(is.sparse){
Sparsity.bins = sparsity.bins
}
options(datatable.fread.input.cmd.message=FALSE)
Start.row <- 1
Start.col <- 1
Set.col <- TRUE
Path.to.file <- Brick
Cumulative.data <- NULL
Cumulative.indices <- NULL
Matrix.range <- c(NA,NA)
NumLines <- ._FindLineNumbers_(Row.len=chr1.len,Col.len=chr2.len)
if(NumLines <= num.rows){
NumLines <- num.rows
}
if(chr1.len <= NumLines){
NumLines <- chr1.len
}
Bin.coverage <- NULL
Row.sums <- NULL
Col.sums <- NULL
Col.bin.coverage <- NULL
Sparsity.Index <- NULL
Iterations.number <- chr1.len / NumLines
Iterations <- rep(NumLines,floor(Iterations.number))
Col.metrics.list <- list("bin.coverage" = rep(0,chr2.len),
"col.sums" = rep(0,chr2.len))
if(is.null(distance)){
distance <- chr2.len
}
if(floor(Iterations.number)!=ceiling(Iterations.number)){
cumulative <- sum(Iterations)
Iterations <- c(Iterations,(chr1.len-cumulative))
}
Skippity<-0
if(length(Iterations)>1){
Skippity.cumsum <- cumsum(Iterations)
Skippity <- c(0,Skippity.cumsum[-length(Skippity.cumsum)])
}
i<-1
# top.coords <- NULL
# bottom.coords <- NULL
Drop.what <- seq_len(chr2.len)
while(i<=length(Iterations)) {
Iter <- Iterations[i]
Skip <- Skippity[i]
Matrix <- as.matrix(fread(file = Matrix.file, sep=delim, nrows=Iter,
na.strings="NA", stringsAsFactors=FALSE, skip=Skip, verbose=FALSE,
dec=".", showProgress=TRUE))
message("Read ",Iter," lines after Skipping ",Skip," lines")
Metrics.list <- ._Compute_various_matrix_metrics(Matrix = Matrix,
compute.sparsity = compute.sparsity, sparsity.bins = sparsity.bins,
range = Matrix.range, distance = distance,
diag.position.start = Skip + 1)
Col.metrics.list <- ._Compute_various_col_matrix_metrics(
Matrix = Matrix,
metrics.list = Col.metrics.list)
Matrix.range <- Metrics.list[["extent"]]
Bin.coverage <- c(Bin.coverage,Metrics.list[["bin.cov"]])
Row.sums <- c(Row.sums,Metrics.list[["row.sum"]])
Sparsity.Index <- c(Sparsity.Index,Metrics.list[["sparsity"]])
Cumulative.data <- rbind(Cumulative.data,Matrix)
Obj.size <- object.size(Cumulative.data)
if(Obj.size >= Reference.object$Max.vector.size |
i == length(Iterations)){
Start <- c(Start.row,1)
Stride <- c(1,1)
Count <- c(nrow(Cumulative.data),ncol(Cumulative.data))
message("Inserting Data at location: ",Start[1])
message("Data length: ",Count[1])
._Brick_Put_Something_(Group.path=Group.path, Brick = Brick,
Name = Reference.object$hdf.matrix.name,
data = Cumulative.data, Start = Start, Stride = Stride,
Count = Count)
Start.row <- Start.row + Count[1]
Set.col <- TRUE
Cumulative.data <- NULL
message("Loaded ",Obj.size," bytes of data...")
}
message("Read ",(Skip+Iter)," records...")
i<-i+1
}
._Brick_WriteArray_(Brick = Brick,
Path = Group.path,
name = Reference.object$hdf.matrix.rowSums,
object = Row.sums)
._Brick_WriteArray_(Brick = Brick,
Path = Group.path,
name = Reference.object$hdf.matrix.colSums,
object = Col.metrics.list[["col.sums"]])
._Brick_WriteArray_(Brick = Brick,
Path = Group.path,
name = Reference.object$hdf.matrix.coverage,
object = Bin.coverage)
._Brick_WriteArray_(Brick = Brick,
Path = Group.path,
name = Reference.object$hdf.matrix.coverage.t,
object = Col.metrics.list[["bin.coverage"]]/chr1.len)
if(compute.sparsity){
._Brick_WriteArray_(Brick = Brick, Path = Group.path,
name = Reference.object$hdf.matrix.sparsity,
object = Sparsity.Index)
}
Attributes <- Reference.object$matrices.chrom.attributes
options(datatable.fread.input.cmd.message=FALSE)
Attr.vals <- c(basename(Matrix.file),
as.double(Matrix.range),
as.integer(is.sparse),
as.integer(distance),
as.integer(TRUE))
WriteAttributes(Path = Group.path, File = Brick,
Attributes = Attributes,
values = Attr.vals,
on = "group")
return(TRUE)
}
.create_brick <- function(output_directory, filename,
chrom1, chrom2, resolution, bintable_df,
hdf_chunksize=NULL, remove_existing=FALSE,
link_existing = FALSE){
Reference.object <- GenomicMatrix$new()
Root.folders <- Reference.object$GetRootFolders()
Chrom_info_df <- return_chrominfo_df(bintable_df = bintable_df,
chromosomes = NULL)
Dims <- c(Chrom_info_df[Chrom_info_df$chr == chrom1,"nrow"],
Chrom_info_df[Chrom_info_df$chr == chrom2,"nrow"])
max_size <- c(Chrom_info_df[Chrom_info_df$chr == chrom1,"size"],
Chrom_info_df[Chrom_info_df$chr == chrom2,"size"])
mat_type <- ifelse(chrom1 == chrom2, "cis", "trans")
hdf_file <- file.path(output_directory, filename)
if(file.exists(hdf_file)){
if(link_existing){
return(.create_configuration_matrix_info(
resolution = resolution,
chrom1 = chrom1,
chrom2 = chrom2,
chrom1_binned_length = Dims[1],
chrom2_binned_length = Dims[2],
chrom1_max_size = max_size[1],
chrom2_max_size = max_size[2],
type = mat_type,
filename = filename))
}
if(!remove_existing){
stop("An HDF file by the same name already exists.",
" Please provide remove_existing = TRUE to overwrite it,",
" or link_existing = TRUE to add the same file",
" to the BrickContainer")
}
file.remove(hdf_file)
}
h5createFile(hdf_file)
for (Folder in Root.folders) {
CreateGroups(Group.path = Create_Path(Folder),
File = hdf_file)
}
# Create metadata chromosome groups
._Brick_WriteDataFrame_(Brick = hdf_file,
Path = c(Root.folders['metadata']),
name = Reference.object$metadata.chrom.dataset,
object = Chrom_info_df)
._Brick_Add_Ranges_(Group.path = Create_Path(
c(Root.folders['ranges'],
Reference.object$hdf.bintable.ranges.group)),
Brick = hdf_file,
ranges.df = bintable_df,
name = Reference.object$hdf.ranges.dataset.name,
mcol.list = NULL)
CreateGroups(Group.path = Create_Path(c(Root.folders['matrices'],
chrom1)), File = hdf_file)
chr2.path <- Create_Path(
c(Root.folders['matrices'],chrom1,chrom2))
# cat(Chrom.info.df$chr,chrom1,chrom2,"\n")
CreateGroups(Group.path = chr2.path, File = hdf_file)
CreateAttributes(Path = chr2.path, File = hdf_file,
Attributes = Reference.object$matrices.chrom.attributes,
data_types = Reference.object$matrices.chrom.attributes.dtype,
dims = Reference.object$matrices.chrom.attributes.dims,
maxdims = NULL,
on = "group")
if(is.null(hdf_chunksize)){
hdf_chunksize <- ceiling(Dims/100)
}
Array.dim <- Chrom_info_df[Chrom_info_df$chr == chrom1,"nrow"]
CreateDataset(Path = c(Root.folders['matrices'], chrom1, chrom2),
File = hdf_file, name = Reference.object$hdf.matrix.name,
dims = Dims, maxdims = Dims)
return(.create_configuration_matrix_info(
resolution = resolution,
chrom1 = chrom1,
chrom2 = chrom2,
chrom1_binned_length = Dims[1],
chrom2_binned_length = Dims[2],
chrom1_max_size = max_size[1],
chrom2_max_size = max_size[2],
type = mat_type,
filename = filename))
}
._GetDimensions <- function(group.path = NULL, dataset.path = NULL,
File = NULL, return.what = NULL){
File.handler <- ._Brick_Get_Something_(Group.path = group.path,
Brick = File, Name = dataset.path, return.what = "dataset_handle")
Dataspace <- H5Dget_space(File.handler)
Extents <- H5Sget_simple_extent_dims(Dataspace)
CloseH5Con(Handle = File.handler, type = "dataset")
if(!is.null(return.what)){
return(Extents[[return.what]])
}else{
return(Extents)
}
}
# ._Get_cachedir <- function(){
# Reference.object <- GenomicMatrix$new()
# Cache.dir.basename <- Reference.object$cache.basename
# Cachebasepath <- user_cache_dir()
# Cache.dir <- BiocFileCache(cache = file.path(Cachebasepath,
# Cache.dir.basename), ask = FALSE)
# return(Cache.dir)
# }
# ._add_metadata_to_cache <- function(metadata.df = NULL, cache.dir = NULL){
# Reference.object <- GenomicMatrix$new()
# bfcmeta(cache.dir,
# name = Reference.object$cache.metacol.cols,
# append = TRUE) <- metadata.df
# }
# ._Create_new_cached_file <- function(Cache.dir = NULL, Brick.path = NULL){
# Reference.object <- GenomicMatrix$new()
# Filename <- basename(Brick.path)
# Dir.path <- normalizePath(dirname(Brick.path))
# Tracked_name <- ._Get_Brick_hashname(Brick.path)
# Working.File <- bfcnew(x = Cache.dir,
# rname = Filename,
# ext = Reference.object$brick.extension,
# rtype = "local")
# DB_id <- names(Working.File)
# Metadata.df <- data.frame(dbid = DB_id,
# hashname = Tracked_name,
# dirpath = Dir.path)
# colnames(Metadata.df) <- c(
# Reference.object$cache.metacol.dbid,
# Reference.object$cache.metacol.hashname,
# Reference.object$cache.metacol.dirpath)
# ._add_metadata_to_cache(metadata.df = Metadata.df,
# cache.dir = Cache.dir)
# return(Working.File)
# }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.