Nothing
checkRetGroupSetParams <- function(params) {
if(params$retcorMethod == "obiwarp") {
quantitative_parameters <-
c("profStep", "gapInit", "gapExtend", "response", "factorDiag",
"factorGap")
qualitative_parameters <-
c("distFunc", "plottype", "localAlignment", "center")
unsupported_parameters <-
c("col", "ty", "initPenalty")
} else {
if(params$retcorMethod == "loess") {
quantitative_parameters <- c("missing", "extra", "span")
qualitative_parameters <- c("smooth", "family", "plottype")
unsupported_parameters <- c("col", "ty")
}
}
quantitative_parameters <-
c(quantitative_parameters, "minfrac", "minsamp", "bw", "mzwid", "max")
unsupported_parameters <-
c(unsupported_parameters, "sleep")
checkParams(params, quantitative_parameters, qualitative_parameters,
unsupported_parameters)
}
getDefaultRetCorCenterSample <- function(xset) {
ret <- NULL
for(i in 1:length(filepaths(xset))) {
ret <- c(ret, sum(peaks_IPO(xset)[,"sample"] == i))
}
return(which.max(ret))
}
getDefaultRetGroupStartingParams <-
function(retcorMethod = c("obiwarp", "loess", "none"),
distfunc=c("cor_opt", "cor", "cov", "prd", "euc"),
high_resolution=TRUE) {
retcorMethod <- match.arg(retcorMethod)
ret <- NULL
if(retcorMethod == "obiwarp") {
distfunc <- match.arg(distfunc)
if(distfunc=="cor")
ret <- (list(distFunc="cor",
gapInit=c(0.0, 0.4),
gapExtend=c(2.1, 2.7)))
if(distfunc=="cor_opt")
ret <- (list(distFunc="cor_opt",
gapInit=c(0.0, 0.4),
gapExtend=c(2.1, 2.7)))
if(distfunc=="cov")
ret <- (list(distFunc="cov",
gapInit=c(0.0, 0.4),
gapExtend=c(11.4, 12.0)))
if(distfunc=="prd")
ret <- (list(distFunc="prd",
gapInit=c(0.0, 0.4),
gapExtend=c(7.5, 8.1)))
if(distfunc=="euc")
ret <- (list(distFunc="euc",
gapInit=c(0.7, 1.1),
gapExtend=c(1.5, 2.1)))
ret$profStep <- c(0.7, 1)
ret$plottype <- "none"
ret$response <- 1
ret$factorDiag <- 2
ret$factorGap <- 1
ret$localAlignment <- 0
#ret$initPenalty <- 0
} else {
if(retcorMethod == "loess") {
ret <- list()
ret$missing <- c(1,3)
ret$extra <- c(1,3)
ret$span <- c(0.1, 0.3)
ret$smooth <- "loess"
ret$family <- "gaussian"
ret$plottype <- "none"
#ret$col <- NULL
#ret$ty <- NULL
} else { #dont correct retention time
ret <- list()
}
}
ret$retcorMethod <- retcorMethod
#grouping parameter
ret$bw <- c(22,38)
ret$minfrac <- c(0.3, 0.7)
ret$mzwid <- c(0.15, 0.35)
if(high_resolution)
ret$mzwid <- c(0.015, 0.035)
ret$minsamp <- 1
ret$max <- 50
#ret$sleep <- 0
return(ret)
}
getNormalizedResponse <- function(response) {
#good_groups <- sapply(response, "[[", "good_groups")
#bad_groups <- sapply(response, "[[", "bad_groups")
#bad_groups_bool <- bad_groups == 0
#bad_groups[bad_groups_bool] <- 1
#good_groups[bad_groups_bool] <- good_groups[bad_groups_bool] + 1
#group_ratio <- good_groups ^ 2 / bad_groups
GS <- sapply(response, "[[", "GS")
RCS <- sapply(response, "[[", "RCS")
#give penalty when retcor failed
RCS_penalty <- 1/sapply(response, "[[", "retcor_done")
RCS <- RCS/RCS_penalty
#normalize
norm_GS <- (GS - min(GS)) / (max(GS) - min(GS))
norm_RCS <- (RCS - min(RCS)) / (max(RCS) - min(RCS))
norm_GS[is.na(norm_GS)] <- 0
norm_RCS[is.na(norm_RCS)] <- 0
return(norm_GS+norm_RCS)
}
getRGTVValues <- function(xset, exp_index=1, retcor_penalty=1) {
relative_rt_diff <- c()
if(nrow(xcms::groups(xset)) > 0) {
for(i in 1:nrow(xcms::groups(xset))) {
feature_rtmed <- xcms::groups(xset)[i, "rtmed"]
relative_rt_diff <-
c(relative_rt_diff,
mean(abs(feature_rtmed -
peaks_IPO(xset)[groupidx(xset)[[i]], "rt"]) / feature_rtmed))
}
good_groups <-
sum(unlist(lapply(X=groupidx(xset), FUN = function(x, xset) {
ifelse(length(unique(peaks_IPO(xset)[x,"sample"])) ==
length(filepaths(xset)) &
length(peaks_IPO(xset)[x,"sample"]) ==
length(filepaths(xset)), 1, 0)
}, xset)))
bad_groups <- nrow(xcms::groups(xset)) - good_groups
} else {
relative_rt_diff <- 1
good_groups <- 0
bad_groups <- 0
}
tmp_good_groups <- good_groups + ifelse(bad_groups==0, 1, 0)
tmp_bad_groups <- bad_groups + ifelse(bad_groups==0, 1, 0)
ARTS <- (mean(relative_rt_diff)) * retcor_penalty
ret <- list(exp_index = exp_index,
good_groups = good_groups,
bad_groups = bad_groups,
GS = tmp_good_groups^2/tmp_bad_groups,
RCS = 1/ARTS)
ret$retcor_done = retcor_penalty
return(ret)
}
optimizeRetGroup <-
function(xset,
params = getDefaultRetGroupStartingParams(),
nSlaves = 4,
subdir = "IPO",
plot = TRUE) {
iterator = 1
history <- list()
best_range <- 0.25
if (isTRUE(plot) & !is.null(subdir))
if (!file.exists(subdir))
dir.create(subdir)
if(is.null(params$center))
params$center <- getDefaultRetCorCenterSample(xset)
checkRetGroupSetParams(params)
if (!is.numeric(nSlaves)) {
warning("'nSlaves' must be numeric! Setting it to 1.")
nSlaves <- 1
}
while(iterator < 50) {
message("\n\n")
message("starting new DoE with:\n")
message(paste(rbind(paste(names(params), sep="", ": "),
paste(params, sep="", "\n")),
sep=""))
retcor_result <-
retGroupCalcExperimentsCluster(params = params,
xset = xset,
nSlaves = nSlaves)
retcor_result <-
retGroupExperimentStatistic(
retcor_result = retcor_result,
subdir = subdir,
plot = plot,
iterator = iterator,
xset = xset
)
history[[iterator]] <- retcor_result
params <- retcor_result$params$to_optimize
if(!RCSandGSIncreased(history)) {
message("no increase stopping")
history$best_settings <- history[[(length(history)-1)]]$best_settings
return(history)
}
for(i in 1:length(params)) {
parameter_setting <- retcor_result$max_settings[i+1]
bounds <- params[[i]]
curParam <- names(params)[i]
min_bound <- ifelse(curParam == "profStep",0.3,
ifelse(curParam == "mzwid",0.0001,
ifelse(curParam == "bw",0.25,
ifelse(curParam == "span",0.001,0))))
step_factor <-
ifelse(is.na(parameter_setting), 1.2,
ifelse((abs(parameter_setting) <= best_range), 0.8, 1))
step <- (diff(bounds) / 2) * step_factor
if(is.na(parameter_setting)) {
new_center <- decode(0, bounds)
step <- (diff(bounds) / 2) * 1.2
if(new_center > step) {
new_bounds <- c(new_center - step, new_center + step)
} else {
new_bounds <- c(min_bound, 2*step + min_bound)
}
names(new_bounds) <- NULL
params[[i]] <- new_bounds
} else {
if(bounds[1] > min_bound | parameter_setting > -1) {
#center around optimum
new_center <- decode(parameter_setting, bounds)
step <- diff(bounds) / 2
#if parameter are within range, decrease parameter-range
if(abs(parameter_setting) < best_range) {
step <- step * 0.8
}
if(new_center > step) {
new_bounds <- c(new_center - step, new_center + step)
} else {
new_bounds <- c(min_bound, 2*step + min_bound)
}
if(parameter_setting == -1 || parameter_setting == 1) {
step <- step / 5
new_bounds[1] <- max(min_bound, new_bounds[1] - step)
new_bounds[2] <- new_bounds[2] + step
}
#print(paste("new_bounds", paste(new_bounds, collapse=" ")))
names(new_bounds) <- NULL
params[[i]] <- new_bounds
} else {
step <- diff(bounds) / 2
params[[i]] <- c(min_bound, 2*step + min_bound)
}
}
if(curParam == "extra" | curParam == "missing") {
params[[i]] <- round(params[[i]])
}
if(curParam == "profStep" | curParam == "minfrac") {
if(params[[i]][2] > 1) { # 1 is max value for profStep
params[[i]] <- round(c(1-(diff(params[[i]])*0.8), 1),2)
message(paste("profStep or minfrac greater 1, decreasing to",
paste(params[[i]], collapse = " and ")))
}
}
}
params <- attachList(params, retcor_result$params$no_optimization)
iterator <- iterator + 1
}
return(history)
}
optimizeRetGroupSlaveCluster <- function(task, xset, parameters) {
processedData <- retcorGroup(xset, parameters, task)
result <-
getRGTVValues(processedData$xset, task, processedData$retcor_failed)
return(result)
}
RCSandGSIncreased <- function(history) {
index = length(history)
if(index < 2)
return(TRUE)
prev_tv <- history[[index-1]]$target_value
cur_tv <- history[[index]]$target_value
if(cur_tv$bad_groups == 0) {
cur_tv$bad_groups = 1
cur_tv$good_groups = cur_tv$good_groups + 1
}
if(prev_tv$bad_groups == 0) {
prev_tv$bad_groups = 1
prev_tv$good_groups = prev_tv$good_groups + 1
}
if((cur_tv$good_groups^2/cur_tv$bad_groups <=
prev_tv$good_groups^2/prev_tv$bad_groups) |
(cur_tv$RCS <= prev_tv$RCS))
return(FALSE)
return(TRUE)
}
retGroupCalcExperimentsCluster <- function(params, xset, nSlaves=4) {
typ_params <- typeCastParams(params)
if(length(typ_params$to_optimize)>1) {
design <- getCcdParameter(typ_params$to_optimize)
parameters <- decode.data(design)
} else {
design <- data.frame(run.order=1:9, a=seq(-1,1,0.25))
colnames(design)[2] <- names(typ_params$to_optimize)
parameters <- design
parameters[,2] <-
seq(min(typ_params$to_optimize[[1]]),
max(typ_params$to_optimize[[1]]),
diff(typ_params$to_optimize[[1]])/8)
}
tasks <- as.list(1:nrow(design))
parameters <- combineParams(parameters, typ_params$no_optimization)
if(nSlaves > 1) {
# unload snow (if loaded) to prevent conflicts with usage of
# package 'parallel'
if('snow' %in% rownames(installed.packages()))
unloadNamespace("snow")
cl_type<-getClusterType()
cl <- parallel::makeCluster(nSlaves, type = cl_type) #, outfile="log.txt")
#exporting all functions to cluster but only calcRGTV is needed
ex <- Filter(function(x) is.function(get(x, asNamespace("IPO"))),
ls(asNamespace("IPO")))
if(identical(cl_type,"PSOCK")) {
message("Using PSOCK type cluster, this increases memory requirements.")
message("Reduce number of slaves if you have out of memory errors.")
message("Exporting variables to cluster...")
parallel::clusterEvalQ(cl, library("xcms"))
parallel::clusterExport(cl, ex, envir = asNamespace("IPO"))
}
result <- parallel::parLapply(cl, tasks, optimizeRetGroupSlaveCluster, xset,
parameters)
parallel::stopCluster(cl)
} else {
result <- lapply(tasks, optimizeRetGroupSlaveCluster, xset, parameters)
}
#print(result)
response <- list()
for(i in 1:length(result))
response[[result[[i]]$exp_index]] <- result[[i]]
ret <- list()
ret$params <- typ_params
ret$design <- design
ret$response <- response
return(ret)
}
retGroupExperimentStatistic <- function(retcor_result,
subdir,
plot,
iterator,
xset) {
params <- retcor_result$params
resp <- getNormalizedResponse(retcor_result$response)
model <- createModel(retcor_result$design, params$to_optimize, resp)
retcor_result$model <- model
max_settings <- getMaximumLevels(retcor_result$model)
tmp <- max_settings[1,-1]
tmp[is.na(tmp)] <- 1
if (isTRUE(plot) &
length(tmp) > 1) {
if (!is.null(subdir)) {
plotContours(
model = retcor_result$model,
maximum_slice = tmp,
plot_name = file.path(subdir,
paste("retgroup_rsm_", iterator, sep = ""))
)
} else if (is.null(subdir)) {
plotContours(
model = retcor_result$model,
maximum_slice = tmp,
plot_name = NULL
)
}
}
parameters <- as.list(decodeAll(max_settings[-1], params$to_optimize))
parameters <- combineParams(parameters, params$no_optimization)
xset_tmp <- xset
exp_index <- 1
processedData <- retcorGroup(xset_tmp, parameters, exp_index)
tv <-
getRGTVValues(processedData$xset, exp_index, processedData$retcor_failed)
retcor_result$max_settings <- max_settings
retcor_result$target_value <- tv
retcor_result$xset <- processedData$xset_tmp
retcor_result$best_settings <- parameters
return(retcor_result)
}
retcorGroup <- function(xset, parameters, exp_index=1) {
do_retcor <- parameters$retcorMethod[exp_index] != "none"
retcor_failed = ifelse(do_retcor, 1.1, 1)
if(parameters$retcorMethod[exp_index] == "loess") {
try(
xset <- xcms::group(
xset,
method = "density",
bw = parameters$bw[exp_index],
mzwid = parameters$mzwid[exp_index],
minfrac = parameters$minfrac[exp_index],
minsamp = parameters$minsamp[exp_index],
max = parameters$max[exp_index])
)
try(
retcor_failed <- xcms::retcor(
xset,
method = "loess",
plottype = parameters$plottype[exp_index],
family = parameters$family[exp_index],
missing = parameters$missing[exp_index],
extra = parameters$extra[exp_index],
span = parameters$span[exp_index])
)
if(!is.numeric(retcor_failed)) {
xset <- retcor_failed
retcor_failed=1
}
}
if(parameters$retcorMethod[exp_index] == "obiwarp") {
try(
retcor_failed <-
xcms::retcor(xset,
method = "obiwarp",
plottype = parameters$plottype[exp_index],
distFunc = parameters$distFunc[exp_index],
profStep = parameters$profStep[exp_index],
center = parameters$center[exp_index],
response = parameters$response[exp_index],
gapInit = parameters$gapInit[exp_index],
gapExtend = parameters$gapExtend[exp_index],
factorDiag = parameters$factorDiag[exp_index],
factorGap = parameters$factorGap[exp_index],
localAlignment = parameters$localAlignment[exp_index])
)
if(!is.numeric(retcor_failed)) {
xset <- retcor_failed
retcor_failed = 1
}
}
try(
xset <- xcms::group(
xset,
method = "density",
bw = parameters$bw[exp_index],
mzwid = parameters$mzwid[exp_index],
minfrac = parameters$minfrac[exp_index],
minsamp = parameters$minsamp[exp_index],
max = parameters$max[exp_index])
)
return(list(xset = xset, retcor_failed = retcor_failed))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.