Description Usage Arguments Value Author(s) Examples
A function which performs penalised logistic regression.
1 2 3 |
resultvector |
a vector which contains the labeling of the samples |
trainmatrix |
a matrix which includes the data. The rows corresponds to the observations and the columns to the variables. |
kappa |
value range for penalty parameter. If more that one parameter is specified the one with the lowest AIC will be used. |
eps |
precision of convergence |
object |
a fitted PLR model |
... |
here a data matrix from samples that should be predicted |
a list with three arguments
a |
Intercept estimate of the linear predictor |
b |
vector of estimated regression coefficients |
factorlevel |
levels of grouping variable |
aics |
vector of AIC values with respect to penalty parameter kappa |
trs |
vector of effective degrees of freedom with respect to penalty parameter kappa |
Axel Benner, Ulrich Mansmann, based on MathLab code by Paul Eilers
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | library(golubEsets)
data(Golub_Merge)
eSet<-Golub_Merge
X0 <- t(exprs(eSet))
m <- nrow(X0); n <- ncol(X0)
y <- pData(eSet)$ALL.AML
f <- PLR(X0, y,kappa=10^seq(0, 7, 0.5))
if (interactive()) {
x11(width=9, height=4)
par(mfrow=c(1,2))
plot(log10(f$kappas), f$aics, type="l",main="Akaike's Information Criterion", xlab="log kappa", ylab="AIC")
plot(log10(f$kappas), f$trs, type="l",xlab="log kappa",
ylab="Dim",main="Effective dimension")
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.