Description Usage Arguments Value Author(s) See Also Examples
Multiclass approach where k binary SVM classifiers are constructed for a classification problem with k classes: Every classifier is trained to distinguish samples of one class from samples of all other classes. For prediction of the class of a new sample, the sample is classified by all k classifiers, and the class corresponding to the classifier with the maximum decision value is chosen.
1 | SVM.OVA.wrap(x,y,gamma = NULL, kernel = "radial", ...)
|
x,y |
x is a matrix where each row refers to a sample and each column refers to a gene; y is a factor which includes the class for each sample |
gamma |
parameter for support vector machines |
kernel |
parameter for support vector machines |
... |
Further parameters |
A predict function which can be used to predict the classes for a new data set.
Patrick Warnat mailto:p.warnat@dkfz-heidelberg.de
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | ## Not run:
library(golubEsets)
data(Golub_Train)
class.column <- "ALL.AML"
Preprocessingfunctions <- c("varSel.highest.var")
list.of.poss.parameter <- list(var.numbers = c(250,1000))
Preprocessingfunctions <- c("identity")
class.function <- "SVM.OVA.wrap"
list.of.poss.parameter <- list(gamma = 6)
plot.label <- "Samples"
cross.outer <- 10
cross.repeat <- 20
cross.inner <- 5
SVM.estimate <- MCRestimate(Golub_Train,
class.column,
classification.fun = class.function,
thePreprocessingMethods = Preprocessingfunctions,
poss.parameters = list.of.poss.parameter,
cross.outer = cross.outer, cross.inner = cross.inner,
cross.repeat = cross.repeat, plot.label = plot.label)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.