Description Usage Arguments Value Author(s) Examples
View source: R/important.variable.names.R
The information slot of a
MCRestimate
object may contain lists
of variable names that are important for each classification. This
function produces summary tables of these variables. It is assumed
that the first column of each information list contains the variable
names if not otherwise specified with the argument listName.
This is important if someone wants to write a new wrapper for a
classification method.
1 | important.variable.names(mcr,file="important_variables",listName=NULL,writeFile=TRUE,...)
|
mcr |
an object of class |
file |
a character string specifies the name of the output files |
listName |
a character string specifying the variable names vector in the information list |
writeFile |
Should the files be written? |
... |
Further arguments that are passed on to plot.default |
The function is called for its side effect, writing two tables with variable information.
Markus Ruschhaupt mailto:m.ruschhaupt@dkfz.de
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | library(golubEsets)
data(Golub_Train)
class.column <- "ALL.AML"
list.of.poss.parameter <- list(var.numbers = c(250,1000))
Preprocessingfunctions <- c("identity")
list.of.poss.parameter <- list(threshold = 6)
class.function <- "PAM.wrap"
plot.label <- "Samples"
cross.outer <- 10
cross.repeat <- 7
cross.inner <- 5
PAM.estimate <- MCRestimate(Golub_Train,
class.column,
classification.fun = class.function,
thePreprocessingMethods = Preprocessingfunctions,
poss.parameters = list.of.poss.parameter,
cross.outer = cross.outer,
cross.inner = cross.inner,
cross.repeat = cross.repeat,
plot.label = plot.label)
important.variable.names(PAM.estimate)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.