MCRconfusion: Summary tables for MCRestimate objects

Description Usage Arguments Value Author(s) See Also Examples

View source: R/MCRconfusion.R

Description

MCRwrongsamples returns a matrix with all the samples that have a higher frequency of being predicted as a member of a wrong class than of the correct class for at least one classification method. MCRconfusion summarizes the result of the vote matrices

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
MCRwrongsamples(x,
         col.names=names(x),
         rownames.from.object=TRUE,
         subgroup=NULL,
         freq=FALSE)

MCRconfusion(x,
             col.names=names(x),
             row.names=NULL)
             

Arguments

x

List of objects of S3 class MCRestimate

col.names

Vector of strings used for column names. The length must match the number of objects in x

rownames.from.object

Logical. If TRUE then the sample names of the MCRestimate object in x are used as row names

subgroup

Logical. If TRUE then only the samples which belongs to the specified group are listed in the table

freq

Logical. If TRUE then the frequency with which each sample in the table has been misclassified will be printed.

row.names

Vector of strings used for row names. If not specified the names of the groups are used

Value

MCRwrongsamples returns a matrix and MCRconfusion returns a confusion matrix.

Author(s)

Markus Ruschhaupt mailto:m.ruschhaupt@dkfz.de

See Also

MCRestimate

Examples

1
2
3
4
5
6
7
library(golubEsets)
data(Golub_Train)
exSet <- Golub_Train[1:500,]
result1 <- MCRestimate(exSet,"ALL.AML",classification.fun="RF.wrap",cross.outer=3,cross.repeat=2)
result2 <- MCRestimate(exSet,"ALL.AML",classification.fun="PAM.wrap",poss.parameters=list(threshold=c(0.5,1)),cross.inner=3,cross.outer=3,cross.repeat=2)
MCRwrongsamples(list(result1,result2),subgroup="AML",col.names=c("Random Forest","PAM"))
MCRconfusion(list(result1,result2),col.names=c("Random Forest","PAM"))

MCRestimate documentation built on Oct. 31, 2019, 10:29 a.m.