Description Usage Arguments Value Author(s) See Also Examples
MCRwrongsamples
returns a matrix with all the samples that have a higher frequency of being predicted as a member of a wrong class than of the correct class for at least one classification method. MCRconfusion
summarizes the result of the vote matrices
1 2 3 4 5 6 7 8 9 10 | MCRwrongsamples(x,
col.names=names(x),
rownames.from.object=TRUE,
subgroup=NULL,
freq=FALSE)
MCRconfusion(x,
col.names=names(x),
row.names=NULL)
|
x |
List of objects of S3 class |
col.names |
Vector of strings used for column names. The length must match the number of objects in |
rownames.from.object |
Logical. If TRUE then the sample names of the
|
subgroup |
Logical. If TRUE then only the samples which belongs to the specified group are listed in the table |
freq |
Logical. If TRUE then the frequency with which each sample in the table has been misclassified will be printed. |
row.names |
Vector of strings used for row names. If not specified the names of the groups are used |
MCRwrongsamples
returns a matrix and MCRconfusion
returns a confusion matrix.
Markus Ruschhaupt mailto:m.ruschhaupt@dkfz.de
1 2 3 4 5 6 7 | library(golubEsets)
data(Golub_Train)
exSet <- Golub_Train[1:500,]
result1 <- MCRestimate(exSet,"ALL.AML",classification.fun="RF.wrap",cross.outer=3,cross.repeat=2)
result2 <- MCRestimate(exSet,"ALL.AML",classification.fun="PAM.wrap",poss.parameters=list(threshold=c(0.5,1)),cross.inner=3,cross.outer=3,cross.repeat=2)
MCRwrongsamples(list(result1,result2),subgroup="AML",col.names=c("Random Forest","PAM"))
MCRconfusion(list(result1,result2),col.names=c("Random Forest","PAM"))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.