Description Usage Arguments Value Author(s) References Examples
Module detection based on the AMOUNTAIN algorithm, which tries to find the optimal module every time and use a modules extraction way
1 2 | WeightedModulePartitionAmoutain(datExpr, Nmodule, foldername, indicatename,
GeneNames, maxsize = 200, minsize = 3, power = 6, tao = 0.2)
|
datExpr |
gene expression profile, rows are samples and columns genes |
Nmodule |
the number of clusters(modules) |
foldername |
where to store the clusters |
indicatename |
normally a specific tag of condition |
GeneNames |
normally the gene official names to replace the colnames of datExpr |
maxsize |
the maximal nodes allowed in one module |
minsize |
the minimal nodes allowed in one module |
power |
the power parameter of WGCNA, W_ij=|cor(x_i,x_j)|^pwr |
tao |
the threshold to cut the adjacency matrix |
None
Dong Li, dxl466@cs.bham.ac.uk
Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.
1 2 3 4 5 6 7 8 | data(synthetic)
ResultFolder <- 'ForSynthetic' # where middle files are stored
GeneNames <- colnames(datExpr1)
intModules1 <- WeightedModulePartitionAmoutain(datExpr1,5,ResultFolder,'X',
GeneNames,maxsize=100,minsize=50)
truemodule <- c(rep(1,100),rep(2,100),rep(3,100),rep(4,100),rep(5,100))
#mymodule <- getPartition(ResultFolder)
#randIndex(table(mymodule,truemodule),adjust=F)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.