Description Usage Arguments Value Author(s) References Examples
Module detection based on the spectral clustering algorithm, which mainly solve the eigendecomposition on Laplacian matrix
1 2 | WeightedModulePartitionSpectral(datExpr, foldername, indicatename, GeneNames,
power = 6, nn = 10, k = 2)
|
datExpr |
gene expression profile, rows are samples and columns genes |
foldername |
where to store the clusters |
indicatename |
normally a specific tag of condition |
GeneNames |
normally the gene official names to replace the colnames of datExpr |
power |
the power parameter of WGCNA, W_ij=|cor(x_i,x_j)|^power |
nn |
the number of nearest neighbor, used to construct the affinity matrix |
k |
the number of clusters(modules) |
None
Dong Li, dxl466@cs.bham.ac.uk
Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17.4 (2007): 395-416.
1 2 3 4 5 6 7 8 9 | data(synthetic)
ResultFolder <- 'ForSynthetic' # where middle files are stored
indicator <- 'X' # indicator for data profile 1
GeneNames <- colnames(datExpr1)
WeightedModulePartitionSpectral(datExpr1,ResultFolder,indicator,
GeneNames,k=5)
truemodule <- c(rep(1,100),rep(2,100),rep(3,100),rep(4,100),rep(5,100))
#mymodule <- getPartition(ResultFolder)
#randIndex(table(mymodule,truemodule),adjust=F)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.