Description Explore PhenTestResult object Slots Methods Author(s) Examples
A list-based S4 class for storing of model fitting results and other information like dependent variable, method used to build a model, etc.
Helps to support operations needed for model fitting process and modelling/testing results storage.
In the package PhenTestResult object is created by function testDataset
.
PhenTestResults object instance contains the following slots:
1. "analysedDataset" contains subdataset that was used for the modelling/testing:
analysedDataset(phenTestResult)
2. "depVariable" contains dependent variable that was tested: getVariable(phenTestResult)
3. "refGenotype" contains reference genotype which is usually is wildtype: refGenotype(phenTestResult)
4. "testGenotype" contains test genotype: testGenotype(phenTestResult)
5. "method" contains method name that was used for modelling/testing: method(phenTestResult)
6. "transformationRequired" contains TRUE/FALSE value indicating transofrmation of dependent variable:
transformationText(phenTestResult)
or phenTestResult@transformationRequired
7. "lambdaValue" contains lambda value for the Box-Cox transformation:
transformationText(phenTestResult)
or phenTestResult$lambdaValue
8. "scaleShift" contains the value of scale shift for Box-Cox transformation:
transformationText(phenTestResult)
or phenTestResult@scaleShift
9. "transformationCode" contains the code of transformation. Possible values:
0 - transformation is not applicable (methods "FE", "RR", "LR") or switched off by user 1 - transformation is not needed (1 is within the 95 2 - log transformation 3 - power transformation 4 - transformation is not performed since optimal lambda value is not found (-5 > lambda > 5)
transformationText(phenTestResult)
or phenTestResult@transformationCode
10. "parameters" contains the parameters used during method application, e.g. pThreshold for MM and TF:
parameters(phenTestResult)
11. Modelling/testing results are stored in the sections "analysisResults":
analysisResults(phenTestResult)
The contents of the analysisResults slot depend on framework that was used.
The results of MM and TF frameworks:
1. Equation used during linear modeling: analysisResults(phenTestResult)$equation
2. Batch effect significance: analysisResults(phenTestResult)$model.effect.batch
3. Variance equality: analysisResults(phenTestResult)$model.effect.variance
4. Weight effect significance: analysisResults(phenTestResult)$model.effect.weight
5. Sex effect significance: analysisResults(phenTestResult)$model.effect.interaction
6. Evidence of sex effect (p-value): analysisResults(phenTestResult)$model.output.interaction
7. Evidence of genotype effect (p-value):
analysisResults(phenTestResult)$model.output.genotype.nulltest.pVal
8. Formula for the final genotype model: analysisResults(phenTestResult)$model.formula.genotype
9. Formula for the final null model: analysisResults(phenTestResult)$model.formula.null
10. Model fitting output: analysisResults(phenTestResult)$model.output
11. Model fitting summary: summary(analysisResults(phenTestResult)$model.output)$tTable
The results of FE and RR frameworks are stored as a list of htestPhenStat S4 objects:
analysisResults(phenTestResult)[[1]]
.
Each one htestPhenStat object contains:
1. Output of Fisher Exact Test: pvalue(analysisResults(phenTestResult)[[1]])
.
2. Effect size: ES(analysisResults(phenTestResult)[[1]])
.
3. Name of the table analysed (all, males, females): analysedSubset(analysisResults(phenTestResult)[[1]])
.
4. Comparison, used for RR only (High vs Normal/Low, Low vs High/Normal):
comparison(analysisResults(phenTestResult)[[1]])
.
5. Matrix of counts: matrixCount(analysisResults(phenTestResult)[[1]])
.
analysedDataset
:Object of class "data.frame"
~~ analysed dataset
transformationRequired
:Object of class "logical"
~~ flag indicating was or not
transformation performed
lambdaValue
:Object of class "numeric"
~~ Box-Cox transform lambda value
scaleShift
:Object of class "numeric"
~~ Box-Cox transform scale shift
transformationCode
:Object of class "numeric"
~~ code explaining the transformation output
depVariable
:Object of class "character"
~~ dependent variable
refGenotype
:Object of class "character"
~~ reference genotype
testGenotype
:Object of class "character"
~~ test genotype
method
:Object of class "character"
~~ analysis method
parameters
:Object of class "matrix"
~~ parameters of method
analysisResults
:Object of class "list"
~~ results of the analysis
(accessor): Returns dependent variable
(accessor): Returns reference genotype
(accessor): Returns test genotype
(accessor): Returns method used
(accessor): Returns full name of the method used
(accessor): Returns parameteres used during the method application
(accessor): Returns analysis results depending on method
(accessor): Returns analysed dataset
(accessor): Returns the info about transformation
Returns TRUE if the batch is in the dataset, FALSE otherwise
Returns TRUE if the weight is in the dataset, FALSE otherwise
Returns number of sexes in the dataset
Prints out the PhenTestResult object
Returns count matrices if they are present (for methods "FE" and "RR"), NULL otherwise.
Natalja Kurbatova
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | # Mixed Model framework
file <- system.file("extdata", "test1.csv", package="PhenStat")
test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'),
testGenotype="Sparc/Sparc")
result <- PhenStat:::testDataset(test,
equation="withoutWeight",
depVariable="Bone.Area")
PhenStat:::getVariable(result)
PhenStat:::method(result)
# Batch effect is significant
PhenStat:::analysisResults(result)$model.effect.batch
# Variance homogeneosity
PhenStat:::analysisResults(result)$model.effect.variance
# Weight effect is significant
PhenStat:::analysisResults(result)$model.effect.weight
# Sex effect is significant
PhenStat:::analysisResults(result)$model.effect.interaction
# Sex effect p-value - the result of the test
PhenStat:::analysisResults(result)$model.output.interaction
# Genotype effect p-value
PhenStat:::analysisResults(result)$model.output.genotype.nulltest.pVal
# Final model formula with genotype
PhenStat:::analysisResults(result)$model.formula.genotype
# Final model formula without genotype
PhenStat:::analysisResults(result)$model.formula.null
# Final model fitting output
# result$model.output
# Final model fitting summary
# summary(result$model.output)$tTable
# Fisher Exact Test framework
file <- system.file("extdata", "test_categorical.csv", package="PhenStat")
test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'),
testGenotype="Aff3/Aff3")
result <- PhenStat:::testDataset(test,
depVariable="Thoracic.Processes",
method="FE")
PhenStat:::getVariable(result)
PhenStat:::method(result)
for (i in seq_along(analysisResults(result))) {
val <- PhenStat:::analysisResults(result)[[i]]
val
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.