R/comp.R

Defines functions process_oneRNA_euc comp

Documented in comp

#' Arranging information from GRanges produced by readsamples() on
#' per position (nucleotide) basis.
#'
#' comp() takes as input euc_GR GRanges object produced by readsamples()
#' and produces Comp_GR GRanges.
#'
#' @param euc_GR GRanges generated by readsamples() function
#' @param cutoff specifies cutoff length, only inserts of this length or longer
#' will be used for processing (default: 1)
#' @param fasta_file path to fasta file to which reads were mapped. Used to
#' report nucleotide at each position (not required)
#' @return GRanges object with: 1) seqnames (RNAid), 2) start (position within
#' RNA), and metadata: 3) TCR (termination coverage ratio), 4) TC (termination
#' count), 5) Cover (coverage) and 6) PC (priming count) for each position
#' within each RNA.
#' @author Lukasz Jan Kielpinski, Nikos Sidiropoulos
#' @seealso \code{\link{readsamples}}, \code{\link{dtcr}},
#' \code{\link{slograt}}, \code{\link{swinsor}}, \code{\link{compdata}},
#' \code{\link{comp}}
#' @references Kielpinski, L.J., and Vinther, J. (2014). Massive
#' parallel-sequencing-based hydroxyl radical probing of RNA accessibility.
#' Nucleic Acids Res.
#' @examples
#'
#' dummy_euc_GR <- GRanges(seqnames="DummyRNA",
#'                         IRanges(start=round(runif(100)*100),
#'                         width=round(runif(100)*100+1)), strand="+",
#'                         EUC=round(runif(100)*100))
#' comp(dummy_euc_GR)
#'
#' @import GenomicRanges Rsamtools
#' @importFrom S4Vectors endoapply
#' @importFrom BiocGenerics as.vector
#' @export comp
comp <- function(euc_GR, cutoff=1, fasta_file){

#Check conditions:
    #Check if cutoff is >= 1. If it is not this leads to erroneous coverage
    #calculation:
    if(cutoff < 1)
        stop("Cutoff must be >= 1")

    #Check if fasta_file is specified, if the file exists - read it in, if it
    #doesn't - print info:
    if(missing(fasta_file)){
        message("Fasta file not specified.")
        fasta_exists <- FALSE
    }
    else{
        if(file.exists(fasta_file)){
            indexFa(fasta_file)
            fasta_ref <- FaFile(fasta_file)
            fasta_exists <- TRUE
        }
        else{
            message("Warning: Fasta file not found.")
            fasta_exists <- FALSE
        }
    }

    ###Function body:
    #Remove inserts shorter than cutoff (keep removed in removed_GR:
    good_length <- (width(euc_GR) >= cutoff)
    removed_GR <- euc_GR[!good_length]
    euc_GR_good <- euc_GR[good_length]

    #Calculate coverage:
    euc_forCoverage <- euc_GR_good
    end(euc_forCoverage) <- end(euc_forCoverage)-cutoff+1
    cover_all <- coverage(euc_forCoverage, weight=euc_forCoverage$EUC)

    #Calculate TC using coverage function. If element length is set to 1 at the
    #stop site then it corresponds to termination count.
    euc_forTC <- euc_GR_good
    end(euc_forTC) <- start(euc_forTC)
    TC_all <- coverage(euc_forTC, weight=euc_forTC$EUC)

    #Calculate PC, the same way as TC:
    euc_forPC <- euc_GR_good
    start(euc_forPC) <- end(euc_forPC)
    PC_all <- coverage(euc_forPC, weight=euc_forPC$EUC)

    ###Run the single RNA processing for all the RNAs:
    x <- BiocGenerics::as.vector(seqnames(euc_GR_good))
    euc_by_RNA <- split(euc_GR_good, f=x, drop=TRUE)
    Comp_GR <- unlist(suppressWarnings(endoapply(euc_by_RNA,
                                                 FUN=.process_oneRNA_euc,
                                                 TC_all, PC_all, cover_all)))

    #If fasta_file good, add nucleotide identity:
    if(fasta_exists)
        Comp_GR$nt <- as.character(getSeq(fasta_ref, Comp_GR), use.names=FALSE)
    else
        Comp_GR$nt <- NA

    #Print info on fraction of removed EUC's:
    percent_removed <- sum(removed_GR$EUC)/(sum(removed_GR$EUC) +
                                                sum(euc_GR_good$EUC))*100
    message(paste(round(percent_removed,2), "% of EUCs removed due to cutoff"))

    Comp_GR
}

###Auxiliary functions

.process_oneRNA_euc <- function(oneRNA_euc, TC_all, PC_all, cover_all){

    #Name of analysed RNA
    RNAid <- as.character(seqnames(oneRNA_euc[1]))

    #Which coverage vector in the coverage list corresponds to our gene. It is
    #calculated once and assumed to be the same for all three coverage vectors:
    #TC (termination counts), PC (priming counts) and coverage.
    RNA_order <- which(names(TC_all)==RNAid)

    if(length(RNA_order) > 1)
        stop(paste("ERROR: More than one gene with the same ID provided. Check",
                   RNAid))

    #Extracting coverage vectors from coverage list for TC, PC and coverage:
    gene_TC <- as.numeric(TC_all[[RNA_order]]) #coverage to vector
    TC_oneRNA <- data.frame(Pos=1:length(gene_TC), gene_TC)

    gene_PC <- as.numeric(PC_all[[RNA_order]]) #coverage to vector
    PC_oneRNA <- data.frame(Pos=1:length(gene_PC), gene_PC)

    gene_coverage <- as.numeric(cover_all[[RNA_order]]) #coverage to vector
    Cover_oneRNA <- data.frame(Pos=1:length(gene_coverage), gene_coverage)

    #Merging by position:
    merged_oneRNA <- merge(TC_oneRNA, PC_oneRNA, by="Pos", all=TRUE)
    merged_oneRNA <- merge(merged_oneRNA, Cover_oneRNA, by="Pos", all=TRUE)
    merged_oneRNA$TCR <- merged_oneRNA$gene_TC/merged_oneRNA$gene_coverage

    #And constructing GRanges object for single RNA:
    GRanges(seqnames=RNAid,
            IRanges(start=merged_oneRNA$Pos, width=1),
            strand="+",
            TC=merged_oneRNA$gene_TC,
            TCR=merged_oneRNA$TCR,
            Cover=merged_oneRNA$gene_coverage,
            PC=merged_oneRNA$gene_PC)
}

Try the RNAprobR package in your browser

Any scripts or data that you put into this service are public.

RNAprobR documentation built on Nov. 1, 2018, 2:55 a.m.