Description Usage Arguments Value Examples
Compete H0 and H1 models per protein and obtain F statistic
1 2 3 4 5 6 7 8 9 10 11 12 13 | competeModels(
df,
fcThres = 1.5,
independentFiltering = FALSE,
minObs = 20,
optim_fun_h0 = .min_RSS_h0,
optim_fun_h1 = .min_RSS_h1_slope_pEC50,
optim_fun_h1_2 = NULL,
gr_fun_h0 = NULL,
gr_fun_h1 = NULL,
gr_fun_h1_2 = NULL,
maxit = 750
)
|
df |
tidy data frame retrieved after import of a 2D-TPP dataset, potential filtering and addition of a column "nObs" containing the number of observations per protein |
fcThres |
numeric value of minimal fold change (or inverse fold change) a protein has to show to be kept upon independent filtering |
independentFiltering |
boolean flag indicating whether independent filtering should be performed based on minimal fold changes per protein profile |
minObs |
numeric value of minimal number of observations that should be required per protein |
optim_fun_h0 |
optimization function that should be used for fitting the H0 model |
optim_fun_h1 |
optimization function that should be used for fitting the H1 model |
optim_fun_h1_2 |
optional additional optimization function that will be run with paramters retrieved from optim_fun_h1 and should be used for fitting the H1 model with the trimmed sum model, default is NULL |
gr_fun_h0 |
optional gradient function for optim_fun_h0, default is NULL |
gr_fun_h1 |
optional gradient function for optim_fun_h1, default is NULL |
gr_fun_h1_2 |
optional gradient function for optim_fun_h1_2, default is NULL |
maxit |
maximal number of iterations the optimization should be given, default is set to 500 |
data frame summarising the fit characteristics of H0 and H1 models and therof resulting computed F statistics per protein
1 2 3 4 5 6 7 | data("simulated_cell_extract_df")
temp_df <- simulated_cell_extract_df %>%
filter(clustername %in% paste0("protein", 1:10)) %>%
group_by(representative) %>%
mutate(nObs = n()) %>%
ungroup
competeModels(temp_df)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.