inst/doc/bamsignals.R

## ----style, echo = FALSE, results = 'asis'------------------------------------
BiocStyle::markdown()

## ----message = FALSE----------------------------------------------------------
library(GenomicRanges)
library(Rsamtools)
library(bamsignals)

## -----------------------------------------------------------------------------
bampath <- system.file("extdata", "randomBam.bam", package="bamsignals")
genes <- 
  get(load(system.file("extdata", "randomAnnot.Rdata", package="bamsignals")))
genes

## -----------------------------------------------------------------------------
#sequence names of the GenomicRanges object
seqinfo(genes)
#sequence names in the bam file
bf <- Rsamtools::BamFile(bampath)
seqinfo(bf)
#checking if there is an index
file.exists(gsub(".bam$", ".bam.bai", bampath))


## -----------------------------------------------------------------------------
proms <- GenomicRanges::promoters(genes, upstream=100, downstream=100)
counts <- bamCount(bampath, proms, verbose=FALSE)
str(counts)

## -----------------------------------------------------------------------------
counts <- bamCount(bampath, proms, verbose=FALSE, shift=75)
str(counts)

## -----------------------------------------------------------------------------
strand(proms)
counts <- bamCount(bampath, proms, verbose=FALSE, ss=TRUE)
str(counts)

## -----------------------------------------------------------------------------
sigs <- bamProfile(bampath, genes, verbose=FALSE)
sigs

## -----------------------------------------------------------------------------
#CountSignals is conceptually like a list
lsigs <- as.list(sigs)
stopifnot(length(lsigs[[1]])==length(sigs[1]))
#sapply and lapply can be used as if we were using a list
stopifnot(all(sapply(sigs, sum) == sapply(lsigs, sum)))

## -----------------------------------------------------------------------------
stopifnot(all(width(sigs)==width(genes)))

## -----------------------------------------------------------------------------
sssigs <- bamProfile(bampath, genes, verbose=FALSE, ss=TRUE)
sssigs

## -----------------------------------------------------------------------------
str(sssigs[1])
#summing up the counts from the two strands is the same as using ss=FALSE
stopifnot(colSums(sssigs[1])==sigs[1])
#the width function takes into account that now the signals are strand-specific
stopifnot(width(sssigs)==width(sigs))
#the length function does not, a strand-specific signal is twice as long
stopifnot(length(sssigs[1])==2*length(sigs[1]))

## -----------------------------------------------------------------------------
xlab <- "offset from start of the region"
ylab <- "counts per base pair (negative means antisense)"
main <- paste0("read profile of the region ", 
  seqnames(genes)[1], ":", start(genes)[1], "-", end(genes)[1])
plot(sigs[1], ylim=c(-max(sigs[1]), max(sigs[1])), ylab=ylab, xlab=xlab, 
  main=main, type="l")
lines(sssigs[1]["sense",], col="blue")
lines(-sssigs[1]["antisense",], col="red")
legend("bottom", c("sense", "antisense", "both"), 
  col=c("blue", "red", "black"), lty=1)

## -----------------------------------------------------------------------------
#The promoter regions have all the same width
sigs <- bamProfile(bampath, proms, ss=FALSE, verbose=FALSE)
sssigs <- bamProfile(bampath, proms, ss=TRUE, verbose=FALSE)

sigsMat <- alignSignals(sigs)
sigsArr <- alignSignals(sssigs)


## -----------------------------------------------------------------------------
#the dimensions are [base pair, region]
str(sigsMat)
#the dimensions are [strand, base pair, region]
str(sigsArr)

stopifnot(all(sigsMat == sigsArr["sense",,] + sigsArr["antisense",,]))

## -----------------------------------------------------------------------------
avgSig <- rowMeans(sigsMat)
avgSenseSig <- rowMeans(sigsArr["sense",,])
avgAntisenseSig <- rowMeans(sigsArr["antisense",,])
ylab <- "average counts per base pair"
xlab <- "distance from TSS"
main <- paste0("average profile of ", length(proms), " promoters")
xs <- -99:100
plot(xs, avgSig, ylim=c(0, max(avgSig)), xlab=xlab, ylab=ylab, main=main,
  type="l")
lines(xs, avgSenseSig, col="blue")
lines(xs, avgAntisenseSig, col="red")
legend("bottom", c("sense", "antisense", "both"), 
  col=c("blue", "red", "black"), lty=1)

## -----------------------------------------------------------------------------

binsize <- 20
binnedSigs <- bamProfile(bampath, proms, binsize=binsize, verbose=FALSE)
stopifnot(all(width(binnedSigs)==ceiling(width(sigs)/binsize)))
binnedSigs

## -----------------------------------------------------------------------------
avgBinnedSig <- rowMeans(alignSignals(binnedSigs))
#the counts in the bin are the sum of the counts in each base pair
stopifnot(all.equal(colSums(matrix(avgSig, nrow=binsize)),avgBinnedSig))
#let's plot it
ylab <- "average counts per base pair"
plot(xs, avgSig, xlab=xlab, ylab=ylab, main=main, type="l")
lines(xs, rep(avgBinnedSig, each=binsize)/binsize, lty=2)
legend("topright", c("base pair count", "bin count"), lty=c(1, 2))


## -----------------------------------------------------------------------------
covSigs <- bamCoverage(bampath, genes, verbose=FALSE)
puSigs <- bamProfile(bampath, genes, verbose=FALSE)
xlab <- "offset from start of the region"
ylab <- "reads per base pair"
main <- paste0("read coverage and profile of the region ", seqnames(genes)[1],
  ":", start(genes)[1], "-", end(genes)[1])
plot(covSigs[1], ylim=c(0, max(covSigs[1])), ylab=ylab, xlab=xlab, main=main,
  type="l")
lines(puSigs[1], lty=2)
legend("topright", c("covering the base pair", "5' end maps to the base pair"), 
  lty=c(1,2))

## -----------------------------------------------------------------------------
counts.all <- bamCount(bampath, proms, verbose=FALSE)
summary(counts.all)
counts.mapq <- bamCount(bampath, proms, mapq=20, verbose=FALSE)
summary(counts.mapq)

## -----------------------------------------------------------------------------
counts.mapq.noDups <- bamCount(bampath, proms, mapq=20, filteredFlag=1024, verbose=FALSE)
summary(counts.mapq.noDups)

## -----------------------------------------------------------------------------
#5' end falls into regions defined in `proms`
counts.pe.filter <- bamCount(bampath, proms, paired.end="filter", verbose=FALSE)
summary(counts.pe.filter)

#fragment midpoint falls into regions defined in `proms`
counts.pe.midpoint <- bamCount(bampath, proms, paired.end="midpoint", verbose=FALSE)
summary(counts.pe.midpoint)

#counts are similar but not identical
cor(counts.pe.filter, counts.pe.midpoint)

## -----------------------------------------------------------------------------
covSigs <- bamCoverage(bampath, genes, paired.end="extend", verbose=FALSE)
puSigs <- bamProfile(bampath, genes, paired.end="midpoint", verbose=FALSE)
xlab <- "offset from start of the region"
ylab <- "reads per base pair"
main <- paste0("Paired end whole fragment coverage and fragment midpoint profile\n", 
  "of the region ", seqnames(genes)[1], ":", start(genes)[1], "-",
  end(genes)[1])
plot(covSigs[1], ylim=c(0, max(covSigs[1])), ylab=ylab, xlab=xlab, main=main,
  type="l")
lines(puSigs[1], lty=2)
legend("topright", c("covering the base pair", "fragment midpoint maps to the base pair"), 
  lty=c(1,2))

## -----------------------------------------------------------------------------
counts.monoNucl <- bamCount(bampath, genes, paired.end="midpoint", tlenFilter=c(120,170), verbose=FALSE)
summary(counts.monoNucl)

#Coverage of mononucleosomal fragments
covSigs.monoNucl <- bamCoverage(bampath, genes, paired.end="extend", tlenFilter=c(120,170), verbose=FALSE)
xlab <- "offset from start of the region"
ylab <- "reads per base pair"
main <- paste0("Paired end whole fragment coverage for\n", 
  "of the region ", seqnames(genes)[1], ":", start(genes)[1], "-",
  end(genes)[1])
plot(covSigs[1], ylim=c(0, max(covSigs[1])), ylab=ylab, xlab=xlab, main=main,
  type="l")
lines(covSigs.monoNucl[1], lty=3)
legend("topright", c("all fragment sizes", "mononucleosomal fragments only"), 
  lty=c(1,3))

Try the bamsignals package in your browser

Any scripts or data that you put into this service are public.

bamsignals documentation built on Nov. 8, 2020, 5:17 p.m.