Description Usage Arguments Value Examples
Plot interactive parallel coordinate plots.
1 | plotPCPApp(data = data, dataSE = NULL, pointColor = "orange")
|
data |
DATA FRAME | Read counts for parallel coordinate lines |
dataSE |
SUMMARIZEDEXPERIMENT | Summarized experiment format that can be used in lieu of data; default NULL |
pointColor |
CHARACTER STRING | Color of overlaid points on scatterplot matrix; default "orange" |
A Shiny application that shows a parallel coordinate plot and allows users to draw rectangular areas across samples and remove genes that are not inside these areas. The user can download a file that contains the gene IDs that remain.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | # The first example uses data and dataMetrics objects as
# input. The last example creates the same plot now using the
# SummarizedExperiment (i.e. dataSE) object input.
# Example: Create interactive parallel coordinate plot for genes that have
# FDR < 0.01 and logFC < -4. Standardize genes to have an average of zero
# and a standard deviation of one.
data(soybean_ir_sub)
data(soybean_ir_sub_metrics)
# Create standardized version of data
library(matrixStats)
soybean_ir_sub_st = as.data.frame(t(apply(as.matrix(soybean_ir_sub[,-1]), 1,
scale)))
soybean_ir_sub_st$ID = as.character(soybean_ir_sub$ID)
soybean_ir_sub_st = soybean_ir_sub_st[,c(length(soybean_ir_sub_st),
1:length(soybean_ir_sub_st)-1)]
colnames(soybean_ir_sub_st) = colnames(soybean_ir_sub)
nID = which(is.nan(soybean_ir_sub_st[,2]))
soybean_ir_sub_st[nID,2:length(soybean_ir_sub_st)] = 0
library(dplyr, warn.conflicts = FALSE)
plotGenes = filter(soybean_ir_sub_metrics[["N_P"]], FDR < 0.01,
logFC < -4) %>% select(ID)
pcpDat = filter(soybean_ir_sub_st, ID %in% plotGenes[,1])
app <- plotPCPApp(data = pcpDat, pointColor = "purple")
if (interactive()) {
shiny::runApp(app, display.mode = "normal")
}
# Below is the same example, only now using the
# SummarizedExperiment (i.e. dataSE) object as input.
# Example: Create interactive parallel coordinate plot for genes that have
# FDR < 0.01 and logFC < -4. Standardize genes to have an average of zero
# and a standard deviation of one.
## Not run:
data(se_soybean_ir_sub)
# Create standardized version of data
library(matrixStats)
se_soybean_ir_sub_st = se_soybean_ir_sub
assay(se_soybean_ir_sub_st) <-as.data.frame(t(apply(as.matrix(as.data.frame(
assay(se_soybean_ir_sub))), 1, scale)))
nID <- which(is.nan(as.data.frame(assay(se_soybean_ir_sub_st))[,1]))
assay(se_soybean_ir_sub_st)[nID,] <- 0
# To subset our SummarizedExperiment data by a list of genes, we can
# invoke the convertSESubsetGenes() method.
library(dplyr, warn.conflicts = FALSE)
geneList <- as.data.frame(rowData(se_soybean_ir_sub_st)) %>%
filter(N_P.FDR <= 0.01) %>% filter(N_P.logFC < -4)
geneList <- geneList[,1]
pcpDat <- convertSESubsetGenes(se_soybean_ir_sub_st, geneList)
app <- plotPCPApp(dataSE = pcpDat, pointColor = "purple")
if (interactive()) {
shiny::runApp(app, display.mode = "normal")
}
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.