Description Usage Arguments Details Value Examples
Under Bayesian formulation, use prior distributions of factor matrices and generate simulated data
1 | simulate_whx(nrow, ncol, rank, aw = 0.1, bw = 1, ah = 0.1, bh = 1)
|
nrow |
Number of features (genes). |
ncol |
Number of cells (samples). |
rank |
Rank (ncol of W, nrow of H). |
aw |
Shape parameter of basis prior. |
bw |
Mean of basis prior. Scale parameter is equal to |
ah |
Shape parameter of coefficient prior. |
bh |
Mean of coefficient prior. Scale parameter is equal to
|
Basis W
and coefficient matrices H
are sampled from
gamma distributions (priors) with shape (aw,ah
) and mean
(bw,bh
) parameters. Count data X
are sampled from Poisson
distribution with mean values given by WH
.
List with elements w
, h
, and x
, each
containing basis, coefficient, and count matrices.
1 2 3 4 5 | set.seed(1)
x <- simulate_whx(nrow=50,ncol=100,rank=5)
s <- scNMFSet(count=x$x)
s <- vb_factorize(s,ranks=seq(2,8),nrun=5)
plot(s)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.