Nothing
filterCharge <- function(allnodes, df) {
## function to filter the isotopes that have inconsistencies
## in charge
badisoCharge <- unlist(lapply(allnodes, function(x) {
res <- integer()
posp <- which(df$pfeature == x)
if( length(posp) > 0 ) {
posi <- which(df$ifeature == x)
if( length(posi) > 0 ) {
if(df[posp,"pcharge"] != df[posi,"icharge"]) {
res <- c(posp, posi)
}
}
}
res
}))
return(badisoCharge)
}
filterInlinks <- function(inlinks, df) {
## function to drop one parental mass when one isotope
## has two parental masses candidates
badpfeatures <- unlist(lapply(inlinks, function(x) {
rowpfeatures <- which(df$ifeature == x)
## drop the parental feature with less weight
dropRows <- rowpfeatures[-1*which.max(
df[rowpfeatures,"weight"])]
}))
return(badpfeatures)
}
filterOutlinks <- function(outlinks, df) {
## function to drop one isotope when two isotopes
## point to the same parental masss
badifeatures <- unlist(lapply(outlinks, function(x) {
rowifeatures <- which(df$pfeature == x)
## drop the parental feature with less weight
dropRows <- rowifeatures[-1*which.max(
df[rowifeatures,"weight"])]
}))
return(badifeatures)
}
filterIso <- function(isodf, network) {
## Function to filter isotopes data.frame,
## and to create a network of isotopes
netpfeature = vapply(isodf$pfeature, function(x) {
which(igraph::V(network)$id == x)
}, numeric(1))
netifeature = vapply(isodf$ifeature, function(x) {
which(igraph::V(network)$id == x)
}, numeric(1))
isodf$pfeature = netpfeature
isodf$ifeature = netifeature
isodfSorted <- isodf[,c("pfeature", "ifeature")]
isodfSorted <- do.call(rbind,lapply(seq_len(nrow(isodfSorted)),
function(x) { sort(isodfSorted[x,]) }
))
isodf$weight <- igraph::E(network,
P = as.numeric(t(isodfSorted)))$weight
## as.numeric is important to acces correct weight values
## First filter isotopes pointing to two different parents
inlinks <- as.numeric(names(
which(table(isodf[,"ifeature"]) > 1)))
badpfeatures <- filterInlinks(inlinks, isodf)
if( length(badpfeatures) > 0 ) {
isodf <- isodf[-1*badpfeatures,]
}
## Second filter parents pointed by two diferent isotopes
outlinks <- as.numeric(names(
which(table(isodf[,"pfeature"]) > 1)))
badifeatures <- filterOutlinks(outlinks, isodf)
if( length(badifeatures) > 0 ) {
isodf <- isodf[-1*badifeatures,]
}
## Third filter inconsistency in charge
allnodes <- unique(c(isodf[,"pfeature",],isodf[,"ifeature"]))
badisoCharge <- filterCharge(allnodes, isodf)
if( length(badisoCharge) > 0 ) {
isodf <- isodf[-1*badisoCharge,]
}
realpfeature <- vapply(isodf$pfeature, function(x) {
igraph::V(network)[x]$id }, numeric(1))
realifeature <- vapply(isodf$ifeature, function(x) {
igraph::V(network)[x]$id }, numeric(1))
isodf$pfeature <- realpfeature
isodf$ifeature <- realifeature
## Finally create the filtered isotope network
isonet <- igraph::graph.data.frame(isodf[,c("ifeature","pfeature")])
return(list(network = isonet, isodf = isodf))
}
isoGrade <- function(isonet) {
## Function to grade and isotope, starting from 0 to the parental isotpe,
## 1 the first isotope and further
grades <- vapply(igraph::V(isonet), function(x) {
res <- 0
nei <- igraph::neighbors(isonet, v = x, mode = "out")
while(length(nei) > 0) {
res <- res + 1
nei <- igraph::neighbors(isonet, v = nei, mode = "out")
}
res
}, numeric(1))
return(grades)
}
correctGrade <- function(isoTable, maxGrade) {
maxCluster <- max(isoTable$cluster)
clusters <- unique(isoTable$cluster)
res <- do.call(rbind,lapply(seq_len(length(clusters)), function(x) {
cluster <- clusters[x]
cpos <- isoTable[isoTable$cluster == x,]
goodP <- cpos[cpos$grade <= maxGrade,]
badP <- cpos[cpos$grade > maxGrade,]
if(nrow(badP) > 1) {
maxrowN <- max(as.numeric(rownames(badP)))
badP$cluster = maxCluster + maxrowN + 1
badP$grade = 0:(nrow(badP)-1)
goodP = rbind(badP, goodP)
}
goodP
}))
return(res)
}
isonetAttributes <- function(isolist, maxGrade) {
## Function to set the node attributes for each isotope:
## grade, charge, and community
## First assign grade (for info look isoGrade function)
igraph::V(isolist$network)$grade <- isoGrade(isolist$network)
charge <- vapply(
as.numeric(igraph::V(isolist$network)$name), function(x) {
posp <- which(isolist$isodf[,"pfeature"] == x)
if( length(posp) > 0 ) {
res <- isolist$isodf[posp,"pcharge"]
} else {
posi <- which(isolist$isodf[,"ifeature"] == x)
res <- isolist$isodf[posi,"icharge"]
}
res
}, numeric(1))
## Second assign charge of each feature as isotope
igraph::V(isolist$network)$charge <- charge
## Third label features that belong to the same isotope cluster
igraph::V(isolist$network)$cluster <-
igraph::clusters(isolist$network, "weak")$membership
## Final step write a table with all the isotope data
isoTable <- data.frame(
feature = as.numeric(igraph::V(isolist$network)$name),
charge = igraph::V(isolist$network)$charge,
grade = igraph::V(isolist$network)$grade,
cluster = igraph::V(isolist$network)$cluster
)
## Fourth, correct the grade
while(max(isoTable$grade) > maxGrade) {
isoTable <- correctGrade(isoTable, maxGrade)
}
return(isoTable)
}
addIso2peaklist <- function(isoTable, peaklist) {
peaklist$isotope <- rep("M0", nrow(peaklist))
peaklist$isotope[isoTable[,"feature"]] <-
paste(paste("M",isoTable$grade, sep = ""),
paste("[",isoTable$cluster, "]",sep = ""),
sep = " ")
return(peaklist)
}
computelistofIsoTable <- function(anclique, maxCharge, maxGrade, ppm, isom ) {
listofisoTable <- lapply(anclique@cliques, function(x) {
df.clique <- as.data.frame(
cbind(anclique@peaklist[x, c("mz","maxo")],x)
)
colnames(df.clique) <- c("mz","maxo","feature")
## Sort df.clique by intensity because isotopes are less
## intense than their parental features
df.clique <- df.clique[order(df.clique$maxo, decreasing = TRUE),]
## compute isotopes from clique
isodf <- returnIsotopes(df.clique, maxCharge = maxCharge,
ppm = ppm, isom = isom)
if( nrow(isodf) > 0 ) {
## filter the isotope list by charge
## and other inconsistencies
isolist <- filterIso(isodf, anclique@network)
if( nrow(isolist$isodf) > 0 ) {
## write a table with feature, charge, grade and cluster
iTable <- isonetAttributes(isolist, maxGrade)
} else {
iTable = NULL}
} else {
iTable = NULL
}
iTable
})
return(listofisoTable)
}
#' @export
#' @title Annotate isotopes
#'
#' @description This function annotates features that are carbon
#' isotopes based on m/z and intensity data. The monoisotopic
#' mass has to be more intense than the first isotope, the first
#' isotope more intense than the second isotope and so one so forth.
#' Isotopes are annotated within each clique group.
#' @param anclique An 'anClique' object with clique groups computed
#' @param maxCharge Maximum charge considered when we test two
#' features to see whether they are isotopes
#' @param maxGrade The maximum number of isotopes apart from the
#' monoisotopic mass. A 'maxGrade' = 2 means than we have the
#' monoisotopic mass, first isotope and second isotope
#' @param isom The mass difference of the isotope
#' @param ppm Relative error in ppm to consider that two features
#' have the mass difference of an isotope
#' @return It returns an 'anClique' object with isotope annotation.
#' it adds the column 'isotope' to the peaklist in the anClique object
#' @examples
#' data(ex.cliqueGroups)
#' show(ex.cliqueGroups)
#' ex.isoAn <- getIsotopes(ex.cliqueGroups)
#' show(ex.isoAn)
#' @seealso
#' \code{\link{getCliques}}
getIsotopes <- function(anclique, maxCharge = 3,
maxGrade = 2, ppm = 10, isom = 1.003355) {
# Function to get all the isotopes from the m/z data
# after splitting it into clique groups
if(anclique@isoFound == TRUE) {
warning("Isotopes have been already computed for this object")
}
if(anclique@cliquesFound == FALSE) {
warning("Cliques have not been computed for this object.
This could lead to long computing times
for isotope annotation")
}
message("Computing isotopes")
listofisoTable <- computelistofIsoTable(anclique, maxCharge,
maxGrade, ppm, isom )
## If there are no isotopes in all dataset
if( length(listofisoTable) ==
sum(vapply(listofisoTable, is.null, logical(1))) ) {
isoTable <- matrix(c(NA,NA,NA,NA), nrow = 1)
colnames(isoTable) <- c("feature","charge","grade","cluster")
anclique@peaklist$isotope <- rep("M0", nrow(anclique@peaklist))
} else {
## The cluster label is inconsistent between all isotopes found
## let's correct for avoiding confusions
listofisoTable <- listofisoTable[
!vapply(listofisoTable, is.null, logical(1))]
maxC <- max(listofisoTable[[1]]$cluster)
for(i in 2:length(listofisoTable)) {
listofisoTable[[i]]$cluster = listofisoTable[[i]]$cluster + maxC + 1
maxC <- max(listofisoTable[[i]]$cluster)
}
isoTable <- do.call(rbind, listofisoTable)
rownames(isoTable) <- seq_len(nrow(isoTable))
## Change the peaklist adding isotope column
anclique@peaklist <- addIso2peaklist(isoTable, anclique@peaklist)
}
message("Updating anClique object")
## Now change status of isotopes at anclique object
anclique@isoFound <- TRUE
## Put new isotopes table
anclique@isotopes <- isoTable
return(anclique)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.