Nothing
#'Computes variance component test statistic for homogeneous trajectory
#'
#'This function computes an approximation of the variance component test for
#'homogeneous trajectory based on the asymptotic distribution of a mixture of
#'\eqn{\chi^{2}}s using Davies method from \code{\link[CompQuadForm]{davies}}
#'
#'@keywords internal
#'
#'@param y a numeric matrix of dim \code{g x n} containing the raw or
#'normalized RNA-seq counts for g genes from \code{n} samples.
#'
#'@param x a numeric design matrix of dim \code{n x p} containing the \code{p}
#'covariates to be adjusted for.
#'
#'@param indiv a vector of length \code{n} containing the information for
#'attributing each sample to one of the studied individuals. Coerced
#'to be a \code{factor}.
#'
#'@param phi a numeric design matrix of size \code{n x K} containing the
#'\code{K} longitudinal variables to be tested (typically a vector of time
#'points or functions of time).
#'
#'@param w a vector of length \code{n} containing the weights for the \code{n}
#'samples, corresponding to the inverse of the diagonal of the estimated
#'covariance matrix of y.
#'
#'@param Sigma_xi a matrix of size \code{K x K} containing the covariance matrix
#'of the \code{K} random effects corresponding to \code{phi}.
#'
#'@param na_rm logical: should missing values (including \code{NA} and
#'\code{NaN}) be omitted from the calculations? Default is \code{FALSE}.
#'
#'@param n_perm the number of permutation to perform. Default is \code{1000}.
#'
#'@param progressbar logical indicating wether a progressBar should be displayed
#'when computing permutations (only in interactive mode).
#'
#'@param parallel_comp a logical flag indicating whether parallel computation
#'should be enabled. Only Linux and MacOS are supported, this is ignored on
#'Windows. Default is \code{TRUE}.
#'
#'@param nb_cores an integer indicating the number of cores to be used when
#'\code{parallel_comp} is \code{TRUE}.
#'Only Linux and MacOS are supported, this is ignored on Windows.
#'Default is \code{parallel::detectCores() - 1}.
#'
#'@return A list with the following elements:
#'\itemize{
#' \item \code{score}: an approximation of the observed set score
#' \item \code{scores_perm}: a vector containing the permuted set scores
#' \item \code{gene_scores_unscaled}: approximation of the individual gene
#' scores
#' \item \code{gene_scores_unscaled_perm}: a list of approximation of the
#' permuted individual gene scores
#' }
#'
#'
#'
#'@examples
#'set.seed(123)
#'
#'##generate some fake data
#'########################
#'ng <- 100
#'nindiv <- 30
#'nt <- 5
#'nsample <- nindiv*nt
#'tim <- matrix(rep(1:nt), nindiv, ncol=1, nrow=nsample)
#'tim <- cbind(tim, tim^2)
#'sigma <- 5
#'b0 <- 10
#'
#'#under the null:
#'beta1 <- rnorm(n=ng, 0, sd=0)
#'#under the (heterogen) alternative:
#'beta1 <- rnorm(n=ng, 0, sd=0.1)
#'#under the (homogen) alternative:
#'beta1 <- rnorm(n=ng, 0.06, sd=0)
#'
#'y.tilde <- b0 + rnorm(ng, sd = sigma)
#'y <- t(matrix(rep(y.tilde, nsample), ncol=ng, nrow=nsample, byrow=TRUE) +
#' matrix(rep(beta1, each=nsample), ncol=ng, nrow=nsample, byrow=FALSE) *
#' matrix(rep(tim, ng), ncol=ng, nrow=nsample, byrow=FALSE) +
#' matrix(rnorm(ng*nsample, sd = sigma), ncol=ng, nrow=nsample,
#' byrow=FALSE)
#' )
#'myindiv <- rep(1:nindiv, each=nt)
#'x <- cbind(1, myindiv/2==floor(myindiv/2))
#'myw <- matrix(rnorm(nsample*ng, sd=0.1), ncol=nsample, nrow=ng)
#'
#'#run test
#'#We only use few permutations (10) to keep example running time low
#'#Otherwise one can use n_perm = 1000
#'score_homogen <- vc_score_h_perm(y, x, phi=tim, indiv=myindiv,
#' w=myw, Sigma_xi=cov(tim), n_perm = 10,
#' parallel_comp = FALSE)
#'score_homogen$score
#'
#'score_heterogen <- vc_score_perm(y, x, phi=tim, indiv=myindiv,
#' w=myw, Sigma_xi=cov(tim), n_perm = 10,
#' parallel_comp = FALSE)
#'score_heterogen$score
#'
#'scoreTest_homogen <- vc_test_asym(y, x, phi=tim, indiv=rep(1:nindiv, each=nt),
#' w=matrix(1, ncol=ncol(y), nrow=nrow(y)),
#' Sigma_xi=cov(tim), homogen_traj = TRUE)
#'scoreTest_homogen$set_pval
#'scoreTest_heterogen <- vc_test_asym(y, x, phi=tim, indiv=rep(1:nindiv,
#' each=nt),
#' w=matrix(1, ncol=ncol(y), nrow=nrow(y)),
#' Sigma_xi=cov(tim), homogen_traj = FALSE)
#'scoreTest_heterogen$set_pval
#'
#'@seealso \code{\link[CompQuadForm]{davies}}
#'@importFrom CompQuadForm davies
#'@importFrom pbapply pbsapply
#'@importFrom parallel mclapply
#'
#'@export
vc_score_h_perm <- function(y, x, indiv, phi, w,
Sigma_xi = diag(ncol(phi)),
na_rm = FALSE,
n_perm = 1000,
progressbar = TRUE,
parallel_comp = TRUE,
nb_cores = parallel::detectCores() - 1) {
## validity checks
if (sum(!is.finite(w)) > 0) {
stop("At least 1 non-finite weight in 'w'")
}
## dimensions check------
stopifnot(is.matrix(y))
stopifnot(is.matrix(x))
stopifnot(is.matrix(phi))
g <- nrow(y) # the number of genes measured
n <- ncol(y) # the number of samples measured
p <- ncol(x) # the number of covariates
n_t <- ncol(phi) # the number of time bases
stopifnot(nrow(x) == n)
stopifnot(nrow(w) == g)
stopifnot(ncol(w) == n)
stopifnot(nrow(phi) == n)
stopifnot(length(indiv) == n)
# the number of random effects
if (length(Sigma_xi) == 1) {
K <- 1
Sigma_xi <- matrix(Sigma_xi, K, K)
} else {
K <- nrow(Sigma_xi)
stopifnot(ncol(Sigma_xi) == K)
}
stopifnot(n_t == K)
## data formating ------
indiv <- factor(indiv, ordered = TRUE)
nb_indiv <- length(levels(indiv))
y_T <- t(y)
## x_tilde_list <- y_tilde_list <- Phi_list <- list()
## for (i in 1:nb_indiv) {
## select <- indiv==levels(indiv)[i]
## n_i <- length(which(select))
## x_i <- x[select,]
## y_i <- y_T[select,]
## phi_i <- phi[select,]
## Phi_list[[i]] <- do.call(rbind, replicate(g, phi_i,
## simplify = FALSE)) #TODO
## x_tilde_list[[i]] <- matrix(data=rep(x_i, each=g), ncol = p) #TODO
## y_tilde_list[[i]] <- matrix(y_i, ncol=1)
## }
## x_tilde <- do.call(rbind, x_tilde_list)
## y_tilde <- do.call(rbind, y_tilde_list)
## Phi <- do.call(rbind, Phi_list)
## alpha <- solve(t(x_tilde)%*%x_tilde)%*%t(x_tilde)%*%y_tilde
## mu_new <- x_tilde %*% alpha
## y_mu <- y_tilde - mu_new
alpha <- solve(crossprod(x)) %*% t(x) %*% rowMeans(y_T, na.rm = na_rm)
yt_mu <- y_T - do.call(cbind, replicate(g, x %*% alpha, simplify = FALSE))
## test statistic computation ------
sig_xi_sqrt <- (Sigma_xi * diag(K)) %^% (-0.5)
# sig_xi_sqrt <- (Sigma_xi %^% (-0.5))
## xtx_inv <- solve(t(x_tilde) %*% x_tilde)
## long_indiv <- rep(indiv, each = g)
## q <- matrix(NA, nrow=nb_indiv, ncol=K)
## XT_i <- array(NA, c(nb_indiv, p, K))
## U <- matrix(NA, nrow = nb_indiv, ncol = p)
## for (i in 1:nb_indiv){ #for all the genes at once
## select <- indiv==levels(indiv)[i]
## long_select <- long_indiv==levels(indiv)[i]
## y_mu_i <- as.vector(y_mu[long_select,])
## y_tilde_i <- c(y_ij)
## x_tilde_i <- x_tilde[long_select,]
## sigma_eps_inv_diag <- c(t(w)[select,])
## T_i <- sigma_eps_inv_diag*(Phi[long_select,] %*% sig_xi_sqrt)
## q[i,] <- c(y_mu_i %*% T_i)
## XT_i[i,,] <- t(x_tilde_i) %*% T_i
## U[i,] <- xtx_inv %*% t(x_tilde_i) %*% y_mu_i
## }
## XT <- colMeans(XT_i) q_ext <- q - U %*% XT
sig_eps_inv_T <- t(w)
if (length(levels(indiv)) > 1) {
indiv_mat <- stats::model.matrix(~0 + factor(indiv))
} else {
indiv_mat <- matrix(as.numeric(indiv), ncol = 1)
}
avg_xtx_inv_tx <- nb_indiv * tcrossprod(solve(crossprod(x, x)), x)
compute_genewise_scores <- function(v, indiv_mat, avg_xtx_inv_tx) {
phi_perm <- phi[v, , drop = FALSE]
phi_sig_xi_sqrt <- phi_perm %*% sig_xi_sqrt
T_fast <- do.call(cbind, replicate(K, sig_eps_inv_T,
simplify = FALSE)) *
matrix(apply(phi_sig_xi_sqrt, 2, rep, g), ncol = g * K)
q_fast <- matrix(yt_mu, ncol = g * n_t, nrow = n) * T_fast
if (na_rm & sum(is.na(q_fast)) > 0) {
q_fast[is.na(q_fast)] <- 0
}
q <- crossprod(indiv_mat, q_fast)
XT_fast <- t(x) %*% T_fast/nb_indiv
U_XT <- matrix(yt_mu, ncol = g * n_t, nrow = n) *
crossprod(avg_xtx_inv_tx, XT_fast)
if (na_rm & sum(is.na(U_XT)) > 0) {
U_XT[is.na(U_XT)] <- 0
}
U_XT_indiv <- crossprod(indiv_mat, U_XT)
q_ext <- q - U_XT_indiv
qq <- colSums(q, na.rm = na_rm)^2/nb_indiv
return(rowSums(matrix(qq, ncol = K))) # genewise scores
}
perm_list <- c(list(seq_len(n)), lapply(seq_len(n_perm), function(x) {
as.numeric(unlist(lapply(split(x = as.character(seq_len(n)), f = indiv),
FUN = sample)))
}))
if(!parallel_comp){
if(progressbar){
gene_Q <- pbapply::pbsapply(perm_list, compute_genewise_scores,
indiv_mat = indiv_mat,
avg_xtx_inv_tx = avg_xtx_inv_tx)
}else{
gene_Q <- vapply(perm_list, compute_genewise_scores,
FUN.VALUE = rep(1.1, g),
indiv_mat = indiv_mat,
avg_xtx_inv_tx = avg_xtx_inv_tx)
}
}else{
if(progressbar){
gene_Q <- pbapply::pbsapply(perm_list, compute_genewise_scores,
indiv_mat = indiv_mat,
avg_xtx_inv_tx = avg_xtx_inv_tx,
cl = nb_cores)
}else{
gene_Q <- simplify2array(
parallel::mclapply(X = perm_list,
FUN = compute_genewise_scores,
indiv_mat = indiv_mat,
avg_xtx_inv_tx = avg_xtx_inv_tx,
mc.cores = nb_cores))
}
}
QQ <- colSums(gene_Q)
return(list(score = QQ[1], scores_perm = QQ[-1],
gene_scores_unscaled = gene_Q[, 1],
gene_scores_unscaled_perm = gene_Q[, -1]))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.