Nothing
# Experimental functions in deepSNV. Functions in this file are not guaranteed
# to work! They are not exported from the namespace.
# Author: Moritz Gerstung
###############################################################################
#' Test for PCR errors.
#'
#' A test for PCR errors based on the Luria-Delbruck model of error propagation in exponentially growing populations. The test makes use of the fact that in the LD model
#' the variance scales as \eqn{\sigma^2 = 2 \mu T}, where \eqn{\mu} is the mutation rate and \eqn{T} the number of cycles. Moreover, if there are intially \eqn{N_0 \gg 1} molecules,
#' one may use a Normal approximation for the distribution of errors with mean \eqn{\mu} and variance \eqn{\sigma^2/N_0}.
#' @param test Either an \code{\link{deepSNV-class}} object or a named matrix with nucleotide counts.
#' @param control Missing if test is an \code{link{deepSNV-class}} object, otherwise a matrix with nucleotide counts.
#' @param alpha A parameter controlling the variance. Defined as the number of cycles tims the initial number of molecules. Default alpha = 33*1000.
#' @return A matrix with p-values for test and control of class matrix, otherwise an deepSNV object.
#' @author Moritz Gerstung
#' @noRd
setGeneric("PCRTest",
function(test, control, ...) {
standardGeneric("PCRTest")
})
#' Test for PCR errors.
#' @noRd
setMethod("PCRTest",
signature(test="matrix", control="matrix"),
function(test, control, alpha = 33*1000) {
test.rf <- RF(test+.5)
control.rf <- RF(control+.5)
both.rf <- RF(test+control+.5)
v <- 2 * both.rf / alpha #Variance in LD-model #V = f/cycles/N0
2*pnorm(abs(test.rf-control.rf)/(sqrt(v*2)), lower.tail=FALSE)
})
#' Test for PCR errors.
#' @noRd
setMethod("PCRTest",
signature(test="deepSNV", control="missing"),
function(test, control, ...) {
p.val <- PCRTest(test(test, total=T), control(test, total=T), ...)
result <- initialize(test, p.val = pmax(p.val, test@p.val))
return(result)
}
)
#' Estimate overdispersion.
#'
#' This method fits the overdispersion by minimizing the squared distance of the empirical cumulative distribution of the p-values of the \code{\link{deepSNV}} test
#' to a uniform distribution.
#' @note This experimental feature works only if the majority of sites contains no low-frequency variants.
#' @param test Either an \code{\link{deepSNV-class}} object or a named matrix with nucleotide counts.
#' @param control Missing if test is an \code{link{deepSNV-class}} object, otherwise a matrix with nucleotide counts.
#' @param weight Character string denoting how weights should be computed.
#' @param ... Additinal arguments passed to \code{\link{deepSNV}}
#' @author Moritz Gerstung
#' @noRd
setGeneric("overDispersion",
function(test, control, weight, ...) {
standardGeneric("overDispersion")
})
#' Estimate overdispersion.
#' @noRd
setMethod("overDispersion",
signature(test="matrix", control="matrix"),
function(test, control, weight = c("none","geometric"), ...) {
weight = match.arg(weight)
optimize(function(x) {
p = na.omit(as.vector(deepSNV(test,control, over.dispersion = x, ...)@p.val)) + .Machine$double.eps
l <- length(p)
rsq = (log(p) -log(rank(p)/l))^2
if(weight == "geometric")
rsq = rsq/rank(p)
sum(rsq)
},
interval=c(1,10))
})
#' Estimate overdispersion.
#' @noRd
setMethod("overDispersion",
signature(test="deepSNV", control="missing"),
function(test, control, weight = c("none","geometric"), ...){
weight = match.arg(weight)
overDispersion(test@test, test@control, weight, alternative=test@alternative, combine.method=test@combine.method, dirichlet.prior=test@dirichlet.prior,...)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.