Nothing
# Initial value for deconvolution, based on the heuristic EM algorithm
.deconInitSET <- function( S, E, strand, peak,
estDeltaSigma="common", lbDelta=25, lbSigma=25,
psize=21, Fratio=0.5, sindex, beta,
niter=50, mu_init, delta_init, sigma_init,
L_table, stop_eps=1e-6, verbose=FALSE ) {
# initialization
grid_min <- peak[1]
grid_max <- peak[2]
N <- length(S)
n_group <- length(mu_init)
FRvec <- sindex$FRvec
indF <- sindex$indF
indR <- sindex$indR
mu <- mu_init
pi <- rep( 0.90/n_group, n_group )
pi0 <- 0.10
delta <- delta_init
sigma <- sigma_init
fraglen <- E[1] - S[1] + 1
R <- grid_max - grid_min + 1
# iteration
mu_mat <- matrix( NA, niter, n_group )
mu_mat[1,] <- mu_init
pi_mat <- matrix( NA, niter, n_group )
pi_mat[1,] <- pi
pi0_vec <- rep( NA, niter )
pi0_vec[1] <- pi0
delta_vec <- rep( NA, niter )
delta_vec[1] <- delta
sigma_vec <- rep( NA, niter )
sigma_vec[1] <- sigma
for ( i in seq(from = 2, to = niter) ) {
if ( verbose ) {
message( paste("------------ iteration:",i,"------------") )
}
# SE step: stochastic classification
Z <- matrix( 0, N, n_group )
for ( g in seq_len(n_group) ) {
Z[,g] <- pi[g] * ( Fratio * dnorm( S, mu[g] - delta, sigma ) * indF +
( 1 - Fratio ) * dnorm( E, mu[g] + delta, sigma ) * indR )
# check at least one element in Z[,g] is non-zero
if ( verbose ) {
if ( sum(Z[,g]) == 0 ) {
message( "Warning: all elements in Z vector are zero." )
message( "peak region: ", grid_min, "-", grid_max )
message( "event number: ", g )
}
}
}
Z0 <- FRvec * pi0 / ( R + beta - 1 )
nMax <- .ff_ismaxZ0( Z0, Z )
if ( nMax == N ) {
group <- .ff_samp( Z ) + 1
} else {
group <- .ff_samp( cbind(Z0,Z) )
}
# CM step: update mu maximizing overlap with fragments in each group
# group index
gindex <- split( seq_len(N), group )
gbinary <- lapply( gindex, function(x) {
out <- rep( 0, N )
out[ x ] <- 1
return(out)
} )
glen <- lapply( gindex, length )
gmat <- matrix( 0, n_group+1, 2 )
gmat[,1] <- seq(from = 0, to = n_group)
gmat[ as.numeric(names(glen))+1, 2 ] <- unlist(glen)
# M step: update mu
mu <- rep( NA, n_group )
for ( g in seq_len(n_group) ) {
if ( gmat[ (g+1), 2] > 0 ) {
indg <- gbinary[[ as.character(g) ]]
} else {
indg <- rep( 0, N )
}
if ( sum(indg) > 0 ) {
sumF <- sum( ( S + delta ) * indF * indg )
sumR <- sum( ( E - delta ) * indR * indg )
mu[g] <- ( sumF + sumR ) / sum(indg)
} else {
mu[g] <- NA
}
}
# M step: update pi
pi <- rep( NA, n_group )
for ( g in seq_len(n_group) ) {
pi[g] <- gmat[ g+1, 2 ] / N
}
pi0 <- gmat[ 1, 2 ] / N
# safe guard for pi0: when signal is weak, do not use pi0
if ( pi0 > max(pi) ) {
pi0 <- 0
pi <- pi / sum(pi)
}
# reduce dim
pi <- pi[ !is.na(mu) ]
mu <- mu[ !is.na(mu) ]
n_group <- length(which( !is.na(mu) ))
# safe guard for mu estimates (case: nothing left)
if ( all(is.na(mu)) ) {
mu_old <- mu_mat[ (i-1), ]
mu_old <- mu_old[ !is.na(mu_old) ]
n_group <- length(mu_old)
mu <- sample( (S+E)/2, n_group, replace=FALSE )
delta <- fraglen / 2
sigma <- delta / 2
pi <- rep( 0.90/n_group, n_group )
pi0 <- 0.10
next;
}
# M step: update delta & sigma, if common peak shape is not used
if ( estDeltaSigma == "separate" ) {
# M step: update delta
delta <- 0
for ( g in seq_len(n_group) ) {
if ( gmat[ (g+1), 2] > 0 ) {
indg <- gbinary[[ as.character(g) ]]
} else {
indg <- rep( 0, N )
}
if ( sum(indg) > 0 ) {
delta <- delta +
sum( ( ( mu[g] - S ) * indF * indg ) + ( ( E - mu[g] ) * indR * indg ) )
}
}
delta <- delta / N
# M step: update sigma
sigma2 <- 0
for ( g in seq_len(n_group) ) {
if ( gmat[ (g+1), 2] > 0 ) {
indg <- gbinary[[ as.character(g) ]]
} else {
indg <- rep( 0, N )
}
if ( sum(indg) > 0 ) {
sigma2 <- sigma2 + sum( ( ( S - mu[g] + delta )^2 * indF * indg ) +
( ( E - mu[g] - delta )^2 * indR *indg ) )
}
}
sigma <- sqrt( sigma2 / N )
# safe guard for delta & sigma
if ( delta < lbDelta ) {
delta <- lbDelta
}
if ( sigma < lbSigma ) {
sigma <- lbSigma
}
}
# merge nearby mu
if ( n_group >= 2 ) {
mu_new <- c()
pi_new <- c()
mu_current <- mu[1]
pi_current <- pi[1]
for ( g in seq(from = 2, to = n_group) ) {
if ( abs( mu[g] - mu_current ) <= psize ) {
mu_current <- ( mu_current + mu[g] ) / 2
pi_current <- pi_current + pi[g]
} else {
mu_new <- c( mu_new, mu_current )
pi_new <- c( pi_new, pi_current )
mu_current <- mu[g]
pi_current <- pi[g]
}
}
mu_new <- c( mu_new, mu_current )
pi_new <- c( pi_new, pi_current )
mu <- mu_new
pi <- pi_new
n_group <- length(mu)
}
# track estimates
mu_mat[ i, seq_len(length(mu)) ] <- mu
pi_mat[ i, seq_len(length(pi)) ] <- pi
pi0_vec[i] <- pi0
delta_vec[i] <- delta
sigma_vec[i] <- sigma
if ( verbose ) {
message( "mu: " )
message( mu )
message( "pi: " )
message( pi )
message( "pi0: " )
message( pi0 )
message( "delta: " )
message( delta )
message( "sigma: " )
message( sigma )
}
}
return( list( mu=mu, pi=pi, pi0=pi0, delta=delta, sigma=sigma ) )
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.