Description Usage Arguments Value References Examples
These methods provide a wrapper for the 'Competitive Gene Set Test Accounting for Inter-gene Correlation' function camera See 'limma' documention for details.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | ## S4 method for signature 'eSet,CMAPCollection'
camera_score(experiment,sets,predictor=NULL,
design.matrix=NULL, element="exprs",keep.scores=FALSE,...)
## S4 method for signature 'matrix,CMAPCollection'
camera_score(experiment, sets,...)
## S4 method for signature 'matrix,GeneSet'
camera_score(experiment,sets,...)
## S4 method for signature 'eSet,GeneSet'
camera_score(experiment, sets, element="exprs",...)
## S4 method for signature 'matrix,GeneSetCollection'
camera_score(experiment,sets,...)
## S4 method for signature 'eSet,GeneSetCollection'
camera_score(experiment, sets, element="exprs",...)
|
sets |
A |
experiment |
An |
predictor |
A character vector or factor indicating the phenotypic
class of the |
design.matrix |
A design matrix for the experiment. Either the 'predictor' or 'design' parameter must be supplied. If both are supplied, the 'design' is used. |
element |
Character vector specifying which channel of an eSet to extract (defaults to "exprs", alternatives may be e.g. "z", etc.) |
keep.scores |
Logical: keep gene-level scores for all gene sets (Default: FALSE) ? The size of the generated CMAPResults object increases with the number of contained gene sets. For very large collections, setting this parameter to 'TRUE' may require large amounts of memory. |
... |
Additional arguments passed to downstream methods. |
A CMAPResults
object.
Wu, D, and Smyth, GK (2012). Camera: a competitive gene set test accounting for inter-gene correlation. Submitted.
Goeman, JJ, and Buhlmann, P (2007). Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics 23, 980-987.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | data(gCMAPData)
gene.set.collection <- induceCMAPCollection(gCMAPData, "z", higher=2, lower=-2)
sampleNames( gene.set.collection ) <- c("set1", "set2", "set3")
## random score matrix
y <- matrix(rnorm(1000*6),1000,6, dimnames=list(featureNames(gCMAPData), 1:6))
## set1 is differentially regulated
effect <- as.vector(members(gene.set.collection[,1]) * 2)
y[,4:6] <- y[,4:6] + effect
predictor <- c( rep("Control", 3), rep("Case", 3))
res <- camera_score(y, gene.set.collection, predictor = predictor, keep.scores=TRUE)
res
## heatmap of expression scores for set1
set1.expr <- geneScores(res)[["set1"]]
heatmap(set1.expr, scale="none", Colv=NA, labCol=predictor,
RowSideColors=ifelse( attr(set1.expr, "sign") == "up", "red", "blue"),
margin=c(7,5))
legend(0.35,0,legend=c("up", "down"),
fill=c("red", "blue"),
title="Annotated sign",
horiz=TRUE, xpd=TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.