Description Usage Arguments Value See Also Examples
This method extends functions from the GSEAlm package to perform label-permutation based differential expression analysis. In addition to gene set membership, information about the gene sign (up- or down-regulated) is taken into consideration.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ## S4 method for signature 'ExpressionSet,CMAPCollection'
gsealm_score(
query,
set,
removeShift=FALSE,
predictor=NULL,
formula=NULL,
nPerm=1000,
parametric=FALSE,
respect.sign=TRUE,
keep.scores=FALSE,
...)
## S4 method for signature 'eSet,CMAPCollection'
gsealm_score(query, set, element="exprs", ... )
## S4 method for signature 'matrix,CMAPCollection'
gsealm_score(query, set, predictor=NULL, ...)
## S4 method for signature 'eSet,GeneSetCollection'
gsealm_score(query, set, element="exprs",...)
## S4 method for signature 'matrix,GeneSetCollection'
gsealm_score(query, set, ...)
## S4 method for signature 'ExpressionSet,GeneSet'
gsealm_score(query, set,...)
## S4 method for signature 'ExpressionSet,GeneSetCollection'
gsealm_score(query, set,...)
## S4 method for signature 'eSet,GeneSet'
gsealm_score(query, set, element="exprs", ...)
## S4 method for signature 'matrix,GeneSet'
gsealm_score(query, set, ...)
|
query |
An |
set |
A |
removeShift |
logical: should normalization begin with a column-wise removal of the mean shift? Note: this option is not available for analysis of big.matrix backed eSet objects. |
predictor |
A character string identifying one column in the pData slot of a 'query' ExpressionSet from which to construct the formula for the linear model. Ignored if 'formula' is provided. |
formula |
The formula to be used in the linear model. See
|
nPerm |
The number of sample-label permutations to perform. |
parametric |
Logical, if set to 'TRUE', no label permutations are performed. Instead, p-values are calculated based on a parametric approximation. |
respect.sign |
Logical, if set to 'FALSE', gene sign information is ignored, considering up- and down-regulated genes to be equal. |
element |
Character string specifying which element to extract when coercing an ExpressionSet from an eSet subclass. |
keep.scores |
Logical: keep gene-level scores for all gene sets (Default: FALSE) ? The size of the generated CMAPResults object increases with the number of contained gene sets. For very large collections, setting this parameter to 'TRUE' may require large amounts of memory. |
... |
Additional arguments passed on to downstream functions. |
This method returns a CMAPResults object.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | data(gCMAPData)
## induce gene sets from a collection of z-scores
gene.set.collection <- induceCMAPCollection(
gCMAPData,
"z",
higher=2,
lower=-2)
sampleNames(gene.set.collection) <- c("set1", "set2", "set3")
## random score matrix
y <- matrix(rnorm(1000*6),1000,6,
dimnames=list(featureNames(gCMAPData), 1:6))
## set1 is differentially regulated
effect <- as.vector(members(gene.set.collection[,1]) * 2)
y[,4:6] <- y[,4:6] + effect
predictor <- c( rep("Control", 3), rep("Case", 3))
## run analysis and keep gene-level expression scores
res <- gsealm_score(
y,
gene.set.collection,
predictor=predictor,
nPerm=100,
keep.scores=TRUE)
res
## heatmap of expression scores for set1
set1.expr <- geneScores(res)[["set1"]]
heatmap(set1.expr, scale="none", Colv=NA, labCol=predictor,
RowSideColors=ifelse(
attr(set1.expr, "sign") == "up", "red", "blue"),
margin=c(7,5))
legend(0.35,0,legend=c("up", "down"),
fill=c("red", "blue"),
title="Annotated sign",
horiz=TRUE, xpd=TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.