Description Usage Arguments Value References Examples
These methods provide a wrapper for the Rotation Gene Set Enrichment Analysis function romer Romer performes a competitive test in that the different gene sets are pitted against one another. Instead of permutation, it uses rotation, a parametric resampling method suitable for linear models (Langsrud, 2005).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | ## S4 method for signature 'eSet,CMAPCollection'
romer_score(experiment,sets,predictor=NULL,
design.matrix=NULL, element="exprs", keep.scores=FALSE, ...)
## S4 method for signature 'matrix,CMAPCollection'
romer_score(experiment, sets,...)
## S4 method for signature 'matrix,GeneSet'
romer_score(experiment,sets,...)
## S4 method for signature 'eSet,GeneSet'
romer_score(experiment, sets,...)
## S4 method for signature 'matrix,GeneSetCollection'
romer_score(experiment,sets,...)
## S4 method for signature 'eSet,GeneSetCollection'
romer_score(experiment, sets,...)
|
sets |
A |
experiment |
An |
predictor |
A character vector or factor indicating the phenotypic
class of the |
design.matrix |
A design matrix for the experiment. Either the 'predictor' or 'design' parameter must be supplied. If both are supplied, the 'design' is used. |
element |
Character vector specifying which channel of an eSet to extract (defaults to "exprs", alternatives may be e.g. "z", etc.) |
keep.scores |
Logical: keep gene-level scores for all gene sets (Default: FALSE) ? The size of the generated CMAPResults object increases with the number of contained gene sets. For very large collections, setting this parameter to 'TRUE' may require large amounts of memory. |
... |
Additional arguments passed to downstream methods. |
A CMAPResults
object.
Langsrud, O, 2005. Rotation tests. Statistics and Computing 15, 53-60
Doerum G, Snipen L, Solheim M, Saeboe S (2009). Rotation testing in gene set enrichment analysis for small direct comparison experiments. Stat Appl Genet Mol Biol, Article 34.
Majewski, IJ, Ritchie, ME, Phipson, B, Corbin, J, Pakusch, M, Ebert, A, Busslinger, M, Koseki, H, Hu, Y, Smyth, GK, Alexander, WS, Hilton, DJ, and Blewitt, ME (2010). Opposing roles of polycomb repressive complexes in hematopoietic stem and progenitor cells. Blood, published online 5 May 2010. http://www.ncbi.nlm.nih.gov/pubmed/20445021
Subramanian, A, Tamayo, P, Mootha, VK, Mukherjee, S, Ebert, BL, Gillette, MA, Paulovich, A, Pomeroy, SL, Golub, TR, Lander, ES and Mesirov JP, 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | data(gCMAPData)
gene.set.collection <- induceCMAPCollection(gCMAPData, "z", higher=2, lower=-2)
sampleNames( gene.set.collection ) <- c("set1", "set2", "set3")
## random score matrix
y <- matrix(rnorm(1000*6),1000,6, dimnames=list(featureNames(gCMAPData), 1:6))
## set1 is differentially regulated
effect <- as.vector(members(gene.set.collection[,1]) * 2)
y[,4:6] <- y[,4:6] + effect
predictor <- c( rep("Control", 3), rep("Case", 3))
res <- romer_score(y, gene.set.collection, predictor = predictor, keep.scores=TRUE)
res
## heatmap of expression scores for set1
set1.expr <- geneScores(res)[["set1"]]
heatmap(set1.expr, scale="none", Colv=NA, labCol=predictor,
RowSideColors=ifelse( attr(set1.expr, "sign") == "up", "red", "blue"),
margin=c(7,5))
legend(0.35,0,legend=c("up", "down"),
fill=c("red", "blue"),
title="Annotated sign",
horiz=TRUE, xpd=TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.