distr-methods: Functions for distribution calculations

Description Usage Arguments Author(s) Examples

Description

calcProbXGreaterThanY calculates the probability that X >= Y. calcProbXDiffNormals calculates the probabilities of a set of normals, defined by the vectors mu_Y and sd_Y are greater or less than the reference distribution Y.

Usage

1
2
3
4
5
  calcProbXGreaterThanY(X, Y, rel.tol = .Machine$double.eps^0.25, subdivisions = 100L)
  calcProbXDiffNormals(X, mu_Y, sd_Y, ..., alternative = c("greater", "less", "two-sided"), progress = FALSE)
  #calcCumulativeProbXGreaterThanY(Xs, mu_Ys, sd_Ys, alternative = c("greater", "less", "two-sided"), rel.tol = .Machine$double.eps^0.25, subdivisions = 100L)
  distrprint(X, round.digits = 5)
  twodistr.plot(X, Y, n.steps = 1000, min.q = 10^-3)

Arguments

X

Object of the class Distribution.

Y

Object of the class Distribution.

min.q

minimum quantile

n.steps

Number of steps.

mu_Y

Numeric vector of parameter mu of a Normal.

sd_Y

Numeric vector of parameter sd of a Normal.

subdivisions

the maximum number of subintervals

rel.tol

relative accuracy requested

...

Additional arguments to calcProbXGreaterThanY.

alternative

"less", "greater", or "two-sided".

progress

Show text progress bar?

round.digits

Round digits for printing.

Author(s)

Florian P. Breitwieser

Examples

1
2
  library(distr)
  calcProbXGreaterThanY(Norm(0,.25),Norm(1,.25))

isobar documentation built on Nov. 8, 2020, 7:48 p.m.