Description Usage Arguments Details Value Author(s) References See Also Examples
Create a heat map of prediction profiles
1 2 3 4 5 6 7 | ## S4 method for signature 'PredictionProfile,missing'
heatmap(x, Rowv = TRUE, add.expr,
margins = c(5, 5), RowSideColors = NULL,
cexRow = max(min(35/nrow(x@profiles), 1), 0.1),
cexCol = max(min(35/ncol(x@profiles), 1), 0.1), main = NULL,
dendScale = 1, barScale = 1, startPos = 1, endPos = ncol(x@profiles),
labels = NULL, windowSize = 1, ...)
|
x |
prediction profile of class
|
Rowv |
determines the row order of the plot. When set to |
add.expr |
largely analogous to the standard
|
margins |
largely analogous to the standard
|
RowSideColors |
a vector of color values specifying the colors for the side bar. Default=NULL |
cexRow |
largely analogous to the standard
|
cexCol |
largely analogous to the standard
|
main |
largely analogous to the standard
|
dendScale |
factor scaling the width of the row dendrogram; values have to be larger than 0 and not larger than 2. Default=1 |
barScale |
factor scaling the width of the label color bar. Values have to be larger than 0 and not larger than 4. Default=1 |
startPos |
start sequence position. Together with the
parameter |
endPos |
end sequence position (see also |
labels |
a numeric vector, character vector or factor specifying
the labels for the sequences in the profile. If this parameter is
different from NULL the labels are plotted as side bar using the
colors specified in the parameter |
windowSize |
numerical value specifying the window size of an optional sliding window averaging of the prediction profiles. The value must be larger than 0. Even values are changed internally to odd values by adding 1. Default=1 |
... |
additional parameters which are passed to the |
The heatmap
function provides plotting of heatmaps from prediction
profiles with various possibilities for sample (=row) ordering (see
parameter Rowv
). The heatmap is shown together with an optional
color sidebar showing the labels and an optional row cluster dendrogram
when hierarchical clustering defines the row order. For long sequences the
heatmap can be restricted to a subset of positions. Additionally smoothing
can be applied to the prediction profiles through sliding window averaging.
Through smoothing important regions can become better visible.
Invisibly, a cluster dendrogram.
Johannes Palme <kebabs@bioinf.jku.at>
http://www.bioinf.jku.at/software/kebabs
(Bodenhofer, 2009) – U. Bodenhofer, K. Schwarzbauer, M. Ionescu and
S. Hochreiter. Modelling position specificity in sequence kernels by fuzzy
equivalence relations.
(Mahrenholz, 2011) – C.C. Mahrenholz, I.G. Abfalter, U. Bodenhofer, R. Volkmer
and S. Hochreiter. Complex networks govern coiled-coil oligomerizations -
predicting and profiling by means of a machine learning approach.
J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package
for kernel-based analysis of biological sequences.
Bioinformatics, 31(15):2574-2576, 2015.
DOI: 10.1093/bioinformatics/btv176.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | ## load coiled coil data
data(CCoil)
## define annotation specific gappy pair kernel
gappya <- gappyPairKernel(k=1,m=11, annSpec=TRUE)
## train model
model <- kbsvm(x=ccseq, y=as.numeric(yCC), kernel=gappya,
pkg="e1071", svm="C-svc", cost=15)
## generate prediction profiles
predProf <- getPredictionProfile(ccseq, gappya,
featureWeights(model), modelOffset(model))
## show prediction profiles
predProf
## Not run:
## plot heatmap for the prediction profiles - random ordering of samples
heatmap(predProf, Rowv="random", main="Prediction Profiles", labels=yCC,
RowSideColors=c("blue", "red"), cexRow=0.15, cexCol=0.3)
## plot heatmap for the prediction profiles - ordering by decision values
heatmap(predProf, Rowv="decision", main="Prediction Profiles", labels=yCC,
RowSideColors=c("blue", "red"), cexRow=0.15, cexCol=0.3)
## plot heatmap for the prediction profiles - with hierarchical clustering
heatmap(predProf, Rowv=TRUE, main="Prediction Profiles", labels=yCC,
RowSideColors=c("blue", "red"), cexRow=0.15, cexCol=0.3)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.