Nothing
.arrayWeightsPrWtsREML <- function(y, design=NULL, weights, var.design, prior.n=10, maxiter=50L, tol=1e-6, trace=FALSE)
# Estimate array weights by REML allowing for prior observation weights
# Probes with missing or infinite values are removed.
# Uses an exact Fisher scoring algorithm similar to statmod::remlscor.
# Gordon Smyth
# Created 12 Feb 2019 from .arrayWeightsREML.
# Last revised 15 Feb 2019.
{
# y should be a numeric matrix
narrays <- ncol(y)
ngenes <- nrow(y)
p <- ncol(design)
# Columns of var.design should sum to zero, and intercept column should be omitted.
Z2 <- var.design
Z <- cbind(1,Z2)
ngam <- ncol(Z2)
# Starting values
iter <- 0L
gam <- rep_len(0,ngam)
w <- rep_len(1,narrays)
if(trace) cat("iter convcrit range(w)\n")
# Fisher scoring iteration
p2 <- (p * (p+1L)) %/% 2L
p1p2 <- (p+1L):p2
Eye <- diag(1,nrow=narrays,ncol=p)
sqrt2 <- sqrt(2)
info2 <- matrix(0,ngam,ngam)
repeat {
iter <- iter+1L
# For shrinkage of gam, start from prior weight of prior.n genes
info2 <- prior.n*crossprod(Z2)
z <- prior.n*(w-1)
for (g in 1:ngenes) {
# Fit weighted linear model and extract residual variances
fitm <- lm.wfit(design, y[g,], w*weights[g,])
s2 <- mean(fitm$effects[(fitm$rank+1):narrays]^2)
# Fisher information matrix for variance parameters (including intercept)
Q <- qr.qy(fitm$qr,Eye)
Q2 <- matrix(0,narrays,p2)
j0 <- 0L
for (k in 0:(p-1L)) {
Q2[,(j0+1L):(j0+p-k)] <- Q[,1:(p-k)]*Q[,(k+1):p]
j0 <- j0+p-k
}
if(p > 1) Q2[,p1p2] <- sqrt2*Q2[,p1p2]
h <- rowSums(Q2[,1:p,drop=FALSE])
info <- crossprod(Z,(1-2*h)*Z) + crossprod(crossprod(Q2,Z))
# Fisher information excluding intercept (i.e., for gam)
info2 <- info2 + info[-1,-1,drop=FALSE] - (info[-1,1,drop=FALSE]/info[1,1]) %*% info[1,-1,drop=FALSE]
# Variance model residual
if(s2 > 1e-15) {
z <- z + w * weights[g,] * fitm$residuals^2 / s2 - (1-h)
}
}
# Average information matrix and variance residual per gene
info2 <- info2 / (ngenes+prior.n)
z <- z / (ngenes+prior.n)
# Fisher scoring
dl <- crossprod(Z2, z)
gamstep <- solve(info2, dl)
gam <- gam + gamstep
# Update array weights
w <- drop(exp(Z2 %*% (-gam)))
# Test for convergence
convcrit <- crossprod(dl,gamstep) / (ngenes+prior.n) / ngam
if(trace) cat(iter,convcrit,range(w),"\n")
if(is.na(convcrit)) {
warning("convergence tolerance not achievable, stopping prematurely")
break
}
if(convcrit < tol) break
if(iter==maxiter) {
warning("iteration limit reached")
break
}
}
w
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.