Nothing
normexp.fit.detection.p <- function(x,detection.p="Detection")
# Estimate normexp parameters using negative control probes which are derived from probes' detection p values
# Wei Shi and Gordon Smyth
# Created 27 October 2010. Modified 27 May 2013.
{
if(is(x,"EListRaw")){
if(is.character(detection.p)){
other.colnames <- tolower(names(x[["other"]]))
detection.index <- which(other.colnames %in% tolower(detection.p))
if(length(detection.index)!=1)
stop("Detection p values not found in the data.")
detection.p <- x[["other"]][[detection.index]]
} else {
detection.p <- as.matrix(detection.p)
}
x <- as.matrix(x$E)
} else {
if(is.character(detection.p))
stop("detection.p must be a numeric matrix (unless x is an EListRaw)")
x <- as.matrix(x)
detection.p <- as.matrix(detection.p)
}
if(!all(dim(x) == dim(detection.p)))
stop("The supplied detection p value data do not have the same dimension as that of the intensity data.")
narrays <- ncol(x)
# Check whether pvalues are actually 1-pvalues
y <- x[,1]
p <- detection.p[,1]
if(p[which.max(y)] < p[which.min(y)])
detection.p <- 1-detection.p
mu <- sigma <- rep(NA, narrays)
for(i in 1:narrays){
y <- x[,i]
p <- detection.p[,i]
o <- order(p,y)
y <- y[o]
p <- p[o]
j <- which(!duplicated(p))[-1]
ync <- (y[j]+y[j-1])/2
d <- p[j]-p[j-1]
# if(any(d<0)) stop("detection p-values are not monotonic in the expression values for array",i)
freq <- d/min(d)
n <- sum(freq)
mu[i] <- weighted.mean(ync,freq)
v <- (ync-mu[i])^2
sigma[i] <- sqrt(weighted.mean(v,freq)*n/(n-1))
}
alpha <- pmax(colMeans(x,na.rm=TRUE)-mu,10)
cbind(mu=mu,logsigma=log(sigma),logalpha=log(alpha))
}
normexp.fit.control <- function(x,status=NULL,negctrl="negative",regular="regular",robust=FALSE)
# Estimate normexp parameters using negative control probes
# Wei Shi and Gordon Smyth
# Created 17 April 2009. Last modified 14 January 2015.
{
if(is(x, "EListRaw")) {
if(is.null(status)) status <- x$genes$Status
x <- x$E
}
x <- as.matrix(x)
if(is.null(status)) stop("Probe status not found")
xr <- x[tolower(status)==tolower(regular),,drop=FALSE]
if(nrow(xr)==0) stop("No regular probes found")
xn <- x[tolower(status)==tolower(negctrl),,drop=FALSE]
if(nrow(xn)<2) stop("Fewer than two negative control probes found")
if(robust) {
if(!requireNamespace("MASS",quietly=TRUE)) stop("MASS package required but is not available")
narrays <- ncol(xn)
m <- s <- rep(0,narrays)
# Robustness is judged on the log-scale, assumed normal
for (j in 1:ncol(xn)) {
h <- MASS::huber(log(xn[,j]))
m[j] <- h$mu
s[j] <- h$s
}
# Means and standard deviation are converted back to log-normal
mu <- exp(m+s^2/2)
omega <- exp(s^2)
sigma <- sqrt(omega*(omega-1))*exp(m)
} else {
mu <- colMeans(xn,na.rm=TRUE)
sigma <- sqrt(rowSums((t(xn)-mu)^2,na.rm=TRUE)/(nrow(xn)-1))
}
alpha <- pmax(colMeans(xr,na.rm=TRUE)-mu,10)
cbind(mu=mu,logsigma=log(sigma),logalpha=log(alpha))
}
nec <- function(x,status=NULL,negctrl="negative",regular="regular",offset=16,robust=FALSE,detection.p="Detection")
# Normexp background correction aided by negative controls.
# Wei Shi and Gordon Smyth
# Created 27 September 2010. Last modified 15 Nov 2015.
{
if(is(x, "EListRaw")) {
if(!is.null(x$Eb)) {
x$E <- x$E-x$Eb
x$Eb <- NULL
}
if(is.null(status)) status <- x$genes$Status
if(any(tolower(status) %in% tolower(negctrl))) {
normexp.par <- normexp.fit.control(x,status,negctrl,regular,robust)
} else {
normexp.par <- normexp.fit.detection.p(x,detection.p)
message("Note: inferring mean and variance of negative control probe intensities from the detection p-values.")
}
for(i in 1:ncol(x)) x$E[,i] <- normexp.signal(normexp.par[i,], x$E[,i])
x$E <- x$E + offset
} else {
x <- as.matrix(x)
if(any(tolower(status) %in% tolower(negctrl))){
normexp.par <- normexp.fit.control(x,status,negctrl,regular,robust)
} else {
normexp.par <- normexp.fit.detection.p(x,detection.p)
}
for(i in 1:ncol(x)) x[,i] <- normexp.signal(normexp.par[i,], x[,i])
x <- x + offset
}
x
}
neqc <- function(x, status=NULL, negctrl="negative", regular="regular", offset=16, robust=FALSE, detection.p="Detection", ...)
# Normexp background correction and quantile normalization using control probes
# Wei Shi and Gordon Smyth
# Created 17 April 2009. Last modified 27 October 2010.
{
x.bg <- nec(x,status,negctrl,regular,offset,robust,detection.p)
if(is(x.bg, "EListRaw")) {
y <- normalizeBetweenArrays(x.bg, method="quantile", ...)
if(is.null(status))
status <- y$genes$Status
if(!is.null(status)){
y <- y[tolower(status) == tolower(regular), ]
y$genes$Status <- NULL
}
} else {
x.bg <- as.matrix(x.bg)
y <- log2(normalizeBetweenArrays(x.bg, method="quantile", ...))
if(!is.null(status))
y <- y[tolower(status) == tolower(regular), ]
}
y
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.