R/maSigPro.R

"maSigPro" <- 
function (data, edesign, matrix = "AUTO", groups.vector = NULL, 
    degree = 2, time.col = 1, repl.col = 2, group.cols = c(3:ncol(edesign)), 
    Q = 0.05,  alfa = Q, nvar.correction = FALSE, 
    step.method = "backward", rsq = 0.7, min.obs = 3, vars = "groups", 
    significant.intercept = "dummy",  cluster.data = 1, add.IDs = FALSE, IDs = NULL, 
    matchID.col = 1,  only.names = FALSE, k = 9,  
    cluster.method = "hclust", distance = "cor", 
    agglo.method = "ward.D", iter.max = 500, summary.mode = "median", 
    color.mode = "rainbow", trat.repl.spots = "none", index = IDs[, 
        (matchID.col + 1)], match = IDs[, matchID.col], rs = 0.7, 
    show.fit = TRUE, show.lines = TRUE, pdf = TRUE, cexlab = 0.8, 
    legend = TRUE, main = NULL, ...) 
{
    if (matrix == "AUTO") {
        print("running design")
        design <- make.design.matrix(edesign = edesign, degree = degree, 
            time.col = time.col, repl.col = repl.col, group.cols = group.cols)
        dis <- design$dis
        groups.vector <- design$groups.vector
    }
    else {
        design = (dis <- matrix)
        groups.vector <- groups.vector
    }
    cluster.algorithm <- NULL
    groups <- unique(groups.vector)
    STOP = FALSE
    print("running p.vector")
    fit <- p.vector(data = data, design = design, Q = Q, min.obs = min.obs)
    if (is.null(fit$SELEC) || nrow(fit$SELEC) == 0) {
        summary <- c("no significant genes")
        print("maSigPro halted at p.vector")
        output <- list(summary, fit$dat, fit$G, edesign, dis, 
            fit$min.obs, fit$p.vector, Q)
        names(output) <- c("summary", "input.data", "G", "edesign", 
            "dis", "min.obs", "p.vector", "Q")
        STOP = TRUE
    }
    if (!STOP) {
        print("running T.fit")
        tstep <- T.fit(data = fit, step.method = step.method, 
            min.obs = min.obs, alfa = alfa, nvar.correction = nvar.correction)
        if (is.null(tstep$sol) || nrow(tstep$sol) == 0) {
            summary <- c("no significant genes")
            print("maSigPro halted at tstep")
            output <- list(summary, fit$dat, fit$G, edesign, 
                dis, fit$min.obs, fit$p.vector, tstep$variables, 
                tstep$g, fit$alfa, step.method, Q, alfa, tstep$influ.info)
            names(output) <- c("summary", "input.data", "G", 
                "edesign", "dis", "min.obs", "p.vector", "variables", 
                "g", "p.vector.alfa", "step.method", "Q", "step.alfa", 
                "influ.info")
            STOP = TRUE
        }
        if (!STOP) {
            print("running get.siggenes")
            got.genes <- get.siggenes(tstep, vars = vars, significant.intercept = significant.intercept, 
                rsq = rsq, groups.vector = groups.vector, add.IDs = add.IDs, 
                IDs = IDs, matchID.col = matchID.col, only.names = only.names, 
                trat.repl.spots = trat.repl.spots, index = index, 
                match = match)
            summary <- got.genes$summary
            sig.genes <- got.genes$sig.genes
            sig.genes <- sig.genes
            if (!is.null(sig.genes)) {
                if (pdf) {
                  if (!is.null(main)) {
                    pdf(file = paste(main, "pdf", sep = "."), 
                      title = main)
                  }
                  else {
                    pdf(file = "Results.pdf")
                  }
                }
                if (!only.names) {
                  if (vars != "all") {
                    for (i in 1:length(sig.genes)) {
                      if (nrow(sig.genes[[i]][[1]]) > 0) {
                        print(paste("running see.genes ", i))
                        cluster <- see.genes(data = sig.genes[[i]], 
                          cluster.data = cluster.data, k = k, 
                          cluster.method = cluster.method, distance = distance, 
                          agglo.method = agglo.method, show.fit = show.fit, 
                          dis = dis, step.method = step.method, 
                          min.obs = min.obs, alfa = alfa, nvar.correction = nvar.correction, 
                          summary.mode = summary.mode, color.mode = color.mode, 
                          show.lines = show.lines, cexlab = cexlab, newX11 = FALSE, 
                          legend = legend, main = paste(main, names(sig.genes[i]), 
                            sep = " "), ...)
                        sig.genes[[i]][[1]] <- cbind(sig.genes[[i]][[1]], 
                          cluster$cut)
                        cluster.algorithm <- cluster$cluster.algorithm.used
                        groups <- cluster$groups
                      }
                    }
                  }
                  else {
                    if (nrow(sig.genes[[1]]) > 0) {
                      print("running see.genes")
                      cluster <- see.genes(data = sig.genes, 
                        cluster.data = cluster.data, k = k, cluster.method = cluster.method, 
                        distance = distance, agglo.method = agglo.method, 
                        show.fit = show.fit, dis = dis, step.method = step.method, 
                        min.obs = min.obs, alfa = alfa, nvar.correction = nvar.correction, 
                        summary.mode = summary.mode, color.mode = color.mode, 
                        show.lines = show.lines, cexlab = cexlab, legend = legend, newX11 = FALSE, 
                        main = main, ...)
                      sig.genes[[1]] <- cbind(sig.genes[[1]], 
                        cluster$cut)
                      cluster.algorithm <- cluster$cluster.algorithm.used
                      groups <- cluster$groups
                    }
                  }
                }
                dev.off()
            }
            else print("maSigPro halted at get.siggenes")
            output <- list(summary, sig.genes, fit$dat, fit$G, 
                edesign, dis, fit$min.obs, fit$p.vector, tstep$variables, 
                tstep$g, fit$BH.alfa, step.method, Q, alfa, tstep$influ.info, 
                vars, cluster.algorithm, groups)
            names(output) <- c("summary", "sig.genes", "input.data", 
                "G", "edesign", "dis", "min.obs", "p.vector", 
                "variables", "g", "BH.alfa", "step.method", 
                "Q", "step.alfa", "influ.info", "select.vars", 
                "cluster.algorithm.used", "groups")
        }
    }
    output
}

Try the maSigPro package in your browser

Any scripts or data that you put into this service are public.

maSigPro documentation built on Nov. 1, 2018, 2:35 a.m.