Nothing
setMethod("get.P.r", "NetResponseModel", function(model, subnet.id, log = TRUE) {
# Prior probability for each response (mixture weights) Pr(model, subnet.id)
# output: a vector
pars <- get.model.parameters(model, subnet.id)
if (log) {
log(pars$w)
} else {
pars$w
}
})
setMethod("get.P.Sr", "NetResponseModel", function(sample, model, subnet.id, log = TRUE) {
pars <- get.model.parameters(model, subnet.id)
# Log density of a given sample group P(S|r) for each response; length of output
# equals to number of responses i.e. logsum of the individual sample densities
nodes <- model@subnets[[subnet.id]]
# pick sample data for the response and ensure this is a matrix also when a
# single sample is given
dat <- t(matrix(model@datamatrix[sample, nodes], ncol = length(nodes)))
colnames(dat) <- sample
rownames(dat) <- nodes
P.Sr(dat, pars, log = log)
})
setMethod("get.P.rs.joint", "NetResponseModel", function(sample, model, subnet.id,
log = TRUE) {
# Joint probability P(r,s) where s can be a single point or set of samples: P(r,
# s) = P(s | r) * P( r )
pars <- get.model.parameters(model, subnet.id)
nodes <- model@subnets[[subnet.id]]
# pick sample data for the response and ensure this is a matrix also when a
# single sample is given
dat <- t(matrix(model@datamatrix[sample, nodes], ncol = length(nodes)))
colnames(dat) <- sample
rownames(dat) <- nodes
P.rs.joint(dat, pars, log = TRUE)
})
setMethod("get.P.rS", "NetResponseModel", function(model, subnet.id, log = TRUE) {
# Probability of a response, given sample (group) P(r|S) = P(S|r)P(r)/P(S) = P(S,
# r)/(sum_r P(S, r))
# Joint probability P(r,s) where s can be a single point or set of samples: P(r,
# s) = P(s | r) * P( r )
pars <- get.model.parameters(model, subnet.id)
dat <- get.dat(model, subnet.id)
P.rS(dat, pars, log = TRUE)
})
setMethod("get.P.rs.joint.individual", "NetResponseModel", function(sample, model,
subnet.id, log = TRUE) {
# Joint probability P(r,s) for individual samples samples: P(r, s) = P(s | r) *
# P( r )
pars <- get.model.parameters(model, subnet.id)
dat <- get.dat(model, subnet.id, sample) # dat is now features x samples matrix
prs <- P.rs.joint.individual(dat, pars, log = log)
colnames(prs) <- sample
prs
})
setMethod("get.P.s.individual", "NetResponseModel", function(sample, model, subnet.id,
log = TRUE) {
# Overall probability of sample s, given the model. individually for each sample
# responses x samples for each sample (column), density mass is the sum over
# joint densities on individual responses P(s) = sum_r P(s, r) = sum_r P(s,r) =
# sum_r P(s|r)P(r)
pars <- get.model.parameters(model, subnet.id)
dat <- get.dat(model, subnet.id, sample) # dat is now features x samples matrix
ps <- P.s.individual(dat, pars, log = log)
names(ps) <- sample
ps
})
setMethod("sample.densities", "NetResponseModel", function(sample, model, subnet.id,
log = TRUE, summarize = FALSE) {
# Calculate conditional density P(s|r) for each sample in each response r and
# then in the complete model if summarize = TRUE then give overall density of the
# sample, otherwise densities for individual samples
pars <- get.model.parameters(model, subnet.id)
dat <- get.dat(model, subnet.id, sample) # dat is now features x samples matrix
psr <- P.s.r(dat, pars, log = TRUE)
# Density for the sample given the overall model
ps <- P.s.individual(dat, pars, log = TRUE)
names(ps) <- sample
# dtot <- get.P.s.individual(sample, model, subnet.id, log = TRUE) this should be
# same as colSums(psr * pars$w)
rnam <- rownames(psr)
psr <- rbind(psr, ps)
rownames(psr) <- c(rnam, "total.density")
# psr is a responses x samples matrix
if (summarize) {
psr <- rowSums(psr)
}
if (!log) {
psr <- exp(psr)
}
psr
})
setMethod("get.P.s", "NetResponseModel", function(sample, model, subnet.id, log = TRUE) {
# Overall probability of sample s, given the Gaussian mixture model P(s) = sum_r
# P(s, r) ps <- log(sum(get.P.rs.joint(sample, model, subnet.id, log = FALSE)))
# FIXME: numerically does not hold tightly that P(S) = sumr P(S, r) = sumr
# P(S|r)P(r) the latter equality holds, P(S) is problematic. Differences are not
# big for examples I checked, but they are still notable. Check in more detail
# this one. sum(get.P.rs.joint(s, model, pars = NULL, subnet.id, log = FALSE))
# sum(get.P.Sr(s, model, pars = NULL, subnet.id, log = FALSE) * pars$w)
# P(s) separately for each individual sample
# product over individual sample densities (i.e. log sum) psi <-
# get.P.s.individual(sample, model, subnet.id, log = TRUE)
pars <- get.model.parameters(model, subnet.id)
dat <- get.dat(model, subnet.id, sample) # dat is now features x samples matrix
P.S(dat, pars, log = log)
})
setMethod("get.P.rs", "NetResponseModel", function(model, subnet.id, log = FALSE) {
# Probability of each response, given sample samples x responses matrix, each row
# sums to unity
prs <- sample2response(model, subnet.id)
if (log) {
log(prs)
} else {
prs
}
})
#' Sample-to-response matrix of probabilities P(r|s).
#'
#' Retrieve P(r|s) from NetResponseModel model.
#'
#' Calculates probability density for each response on a given sample based on
#' the estimated Gaussian mixture model.
#'
#' @aliases getqofz getqofz,NetResponseModel-method
#' @usage getqofz(model, subnet.id, log = FALSE)
#' @param model NetResponseModel object.
#' @param subnet.id Subnetwork to investigate.
#' @param log Output in log probabilities.
#' @return Samples x responses matrix. Each entry is a probability P(r|s).
#' @author Leo Lahti \email{leo.lahti@@iki.fi}
#' @references See citation('netresponse').
#' @keywords utilities internal
#' @examples
#'
#' # qofz <- getqofz(model, subnet.id, log = FALSE)
#'
setMethod("getqofz", "NetResponseModel", function(model, subnet.id, log = FALSE) {
# Retrieve P(r|s) from the model, given data and model parameters
pars <- get.model.parameters(model, subnet.id)
dat <- get.dat(model, subnet.id) # Dat is now features x samples matrix
qofz <- P.r.s(dat, pars, log = log)
rownames(qofz) <- rownames(model@datamatrix) #model@samples
colnames(qofz) <- paste("Mode", seq_len(ncol(qofz)), sep = "-")
qofz
})
#' Get subnetwork data
#'
#' @inheritParams sample2response
#' @param sample Define the retrieved samples
#' @aliases get.dat get.dat,NetResponseModel-method
#' @return Subnet data matrix
#' @author Leo Lahti \email{leo.lahti@@iki.fi}
#' @references See citation('netresponse')
#' @keywords utilities
#' @examples
#' ## Load a pre-calculated netresponse model obtained with
#' # model <- detect.responses(toydata$emat, toydata$netw, verbose = FALSE)
#' # data( toydata ); get.dat(toydata$model)
setMethod("get.dat", "NetResponseModel", function(model, subnet.id, sample = NULL) {
# usage get.dat(model, subnet.id, sample = NULL)
if (is.null(sample)) {
sample <- seq_len(nrow(model@datamatrix))
}
nodes <- model@subnets[[subnet.id]]
dat <- t(matrix(model@datamatrix[sample, nodes], length(sample)))
rownames(dat) <- nodes
colnames(dat) <- as.character(sample)
dat
})
#' get.subnets
#'
#' List the detected subnetworks (each is a list of nodes in the corresponding
#' subnetwork).
#'
#' @aliases get.subnets get.subnets,NetResponseModel-method
#' @param model Output from the detect.responses function. An object of
#' NetResponseModel class.
#' @param get.names Logical. Indicate whether to return subnetwork nodes using
#' node names (TRUE) or node indices (FALSE).
#' @param min.size,max.size Numeric. Filter out subnetworks whose size is not
#' within the limits specified here.
#' @param min.responses Numeric. Filter out subnetworks with less responses
#' (mixture components) than specified here.
#' @return A list of subnetworks.
#' @author Leo Lahti \email{leo.lahti@@iki.fi}
#' @references Leo Lahti et al.: Global modeling of transcriptional responses
#' in interaction networks. Bioinformatics (2010). See citation('netresponse')
#' for details.
#' @keywords utilities
#' @export
#' @examples
#' ## Load a pre-calculated netresponse model obtained with
#' # model <- detect.responses(toydata$emat, toydata$netw, verbose = FALSE)
#' # data( toydata ); get.subnets(toydata$model)
setMethod("get.subnets", "NetResponseModel", function(model, get.names = TRUE, min.size = 2,
max.size = Inf, min.responses = 2) {
grouping <- model@last.grouping
# Use feature names instead of indices
if (get.names) {
grouping <- lapply(grouping, function(x) {
colnames(model@datamatrix)[unlist(x)]
})
}
# If filters are given, apply them (stat needs to be specified)
# SUBNET SIZE
subnet.size <- sapply(grouping, length)
df <- data.frame(sapply(grouping, length))
colnames(df) <- c("subnet.size")
inds <- rownames(subset(df, subnet.size >= min.size & subnet.size <= max.size))
## NUMBER OF RESPONSES
if (min.responses > 1) {
stat <- model.stats(model)
# check which subnets pass the filter
inds.size <- rownames(subset(stat, subnet.size >= min.size & subnet.size <=
max.size)) # &
inds.nresp <- rownames(stat)[which(stat[["responses"]] >= min.responses)]
inds <- intersect(inds.size, inds.nresp)
}
# Get the filtered subnetwork list
if (length(inds) == 0) {
grouping <- NULL
} else {
grouping <- grouping[inds]
}
grouping
})
setMethod(f = "[[", signature("NetResponseModel"), definition = (function(x, i, j = "missing",
..., exact = TRUE) {
if (typeof(i) == "numeric") {
i <- names(x)[[i]]
}
get.model.parameters(x, subnet.id = i)
}))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.