Nothing
## ---- include=FALSE-----------------------------------------------------------
library(knitr)
library(regioneR)
opts_chunk$set(concordance=FALSE)
set.seed(21666641)
## -----------------------------------------------------------------------------
A <- createRandomRegions(nregions=50, length.mean=5000000, length.sd=3000000)
B <- c(A[1:25], createRandomRegions(nregions=25, length.mean=500000, length.sd=30000))
numOverlaps(A, B, count.once=TRUE)
numOverlaps(randomizeRegions(A), B, count.once=TRUE)
## -----------------------------------------------------------------------------
pt <- overlapPermTest(A=A, B=B, ntimes=50)
pt
## ---- fig.height=6,fig.width=8------------------------------------------------
plot(pt)
## ---- fig.height=6,fig.width=8------------------------------------------------
lz <- localZScore(pt=pt, A=A, B=B)
plot(lz)
## -----------------------------------------------------------------------------
special <- toGRanges(system.file("extdata", "my.special.genes.txt", package="regioneR"))
all.genes <- toGRanges(system.file("extdata", "all.genes.txt", package="regioneR"))
altered <- toGRanges(system.file("extdata", "my.altered.regions.txt", package="regioneR"))
length(special)
length(all.genes)
length(altered)
## -----------------------------------------------------------------------------
numOverlaps(special, altered)
## -----------------------------------------------------------------------------
random.RS <- resampleRegions(special, universe=all.genes)
random.RS
## -----------------------------------------------------------------------------
random.RS <- resampleRegions(special, universe=all.genes)
numOverlaps(random.RS, altered)
random.RS <- resampleRegions(special, universe=all.genes)
numOverlaps(random.RS, altered)
random.RS <- resampleRegions(special, universe=all.genes)
numOverlaps(random.RS, altered)
random.RS <- resampleRegions(special, universe=all.genes)
numOverlaps(random.RS, altered)
## ---- eval=FALSE--------------------------------------------------------------
# # NOT RUN
# pt <- permTest(A=my.regions, B=repeats, randomize.function=randomizeRegions,
# evaluate.function=numOverlaps)
## ---- eval=FALSE--------------------------------------------------------------
# # NOT RUN
# pt <- permTest(A=my.genes, randomize.function=resampleRegions, universe=all.genes,
# evaluate.function=meanInRegions, x=methylation.levels.450K)
## -----------------------------------------------------------------------------
pt <- permTest(A=special, ntimes=50, randomize.function=resampleRegions, universe=all.genes,
evaluate.function=numOverlaps, B=altered, verbose=FALSE)
## -----------------------------------------------------------------------------
pt
summary(pt)
## ---- fig.height=6,fig.width=8------------------------------------------------
plot(pt)
## ---- fig.height=6,fig.width=8------------------------------------------------
regular <- toGRanges(system.file("extdata", "my.regular.genes.txt", package="regioneR"))
length(regular)
numOverlaps(regular, altered)
pt.reg <- permTest(A=regular, ntimes=50, randomize.function=resampleRegions, universe=all.genes,
evaluate.function=numOverlaps, B=altered, verbose=FALSE)
pt.reg
plot(pt.reg)
## ---- eval=FALSE--------------------------------------------------------------
# #NOT RUN - See Figure 1
# pt.5000 <- permTest(A=special, ntimes=5000, randomize.function=resampleRegions,
# universe=all.genes, evaluate.function=numOverlaps, B=altered, verbose=TRUE)
# plot(pt.5000)
## ---- eval=FALSE--------------------------------------------------------------
# #NOT RUN - See Figure 2
# pt.5000.reg <- permTest(A=regular, ntimes=5000, randomize.function=resampleRegions,
# universe=all.genes, evaluate.function=numOverlaps, B=altered, verbose=TRUE)
# plot(pt.5000.reg)
## -----------------------------------------------------------------------------
A <- toGRanges(data.frame(chr=c("chr1", "chr1", "chr1"), start=c(20000, 50000, 100000), end=c(22000, 70000, 400000)))
## -----------------------------------------------------------------------------
randomizeRegions(A, genome="hg19")
## -----------------------------------------------------------------------------
randomizeRegions(A, genome="hg19", per.chromosome=TRUE)
## -----------------------------------------------------------------------------
circularRandomizeRegions(A, genome="hg19", mask=NA)
## -----------------------------------------------------------------------------
gcContent <- function(A, bsgenome, ...) {
A <- toGRanges(A)
reg.seqs <- getSeq(bsgenome, A)
base.frequency <- alphabetFrequency(reg.seqs)
gc.pct <- (sum(base.frequency[,"C"]) + sum(base.frequency[,"G"]))/sum(width(A))
return(gc.pct)
}
## -----------------------------------------------------------------------------
permuteRegionsMetadata <- function(A, ...) {
A <- toGRanges(A)
mcols(A)[,1] <- mcols(A)[sample(length(A)),1]
return(A)
}
## -----------------------------------------------------------------------------
A <- createRandomRegions(nregions=50, length.mean=5000000, length.sd=3000000)
B <- c(A[1:25], createRandomRegions(nregions=25, length.mean=500000, length.sd=30000))
#Without mc.set.seed=FALSE
set.seed(123)
overlapPermTest(A, B, ntimes=10, force.parallel=TRUE)
set.seed(123)
overlapPermTest(A, B, ntimes=10, force.parallel=TRUE)
#With mc.set.seed=FALSE
set.seed(123)
overlapPermTest(A, B, ntimes=10, mc.set.seed=FALSE, force.parallel=TRUE)
set.seed(123)
overlapPermTest(A, B, ntimes=10, mc.set.seed=FALSE, force.parallel=TRUE)
## ---- fig.height=6,fig.width=8------------------------------------------------
pt <- permTest(A=special, ntimes=50, randomize.function=resampleRegions, universe=all.genes,
evaluate.function=numOverlaps, B=altered, verbose=FALSE)
lz <- localZScore(A=special, pt=pt, window=10*mean(width(special)),
step=mean(width(special))/2, B=altered)
plot(lz)
## ---- fig.height=6,fig.width=8------------------------------------------------
genome <- filterChromosomes(getGenome("hg19"), keep.chr="chr1")
B <- createRandomRegions(nregions=100, length.mean=10000, length.sd=20000, genome=genome,
non.overlapping=FALSE)
A <- B[sample(20)]
pt <- overlapPermTest(A=A, B=B, ntimes=100, genome=genome, non.overlapping=FALSE)
pt
lz <- localZScore(A=A, B=B, pt=pt, window=10*mean(width(A)), step=mean(width(A))/2 )
plot(lz)
## -----------------------------------------------------------------------------
A <- data.frame(chr=1, start=c(1,15,24), end=c(10,20,30), x=c(1,2,3), y=c("a","b","c"))
B <- toGRanges(A)
B
## -----------------------------------------------------------------------------
toDataframe(B)
## -----------------------------------------------------------------------------
human.genome <- getGenomeAndMask("hg19", mask=NA)$genome
human.canonical <- filterChromosomes(human.genome, organism="hg")
listChrTypes()
human.autosomal <- filterChromosomes(human.genome, organism="hg", chr.type="autosomal")
human.123 <- filterChromosomes(human.genome, keep.chr=c("chr1", "chr2", "chr3"))
## -----------------------------------------------------------------------------
overlaps.df <- overlapRegions(A, B)
overlaps.df
## -----------------------------------------------------------------------------
overlaps.df <- overlapRegions(A, B, type="BinA", get.pctA=TRUE)
overlaps.df
## -----------------------------------------------------------------------------
overlaps.df <- overlapRegions(A, B, min.bases=5)
overlaps.df
## -----------------------------------------------------------------------------
overlaps.bool <- overlapRegions(A, B, min.bases=5, only.boolean=TRUE)
overlaps.bool
## -----------------------------------------------------------------------------
overlaps.int <- overlapRegions(A, B, min.bases=5, only.count=TRUE)
overlaps.int
## ---- eval=FALSE--------------------------------------------------------------
# #NOT RUN
# set.seed(12345)
# cpgHMM <- toGRanges("http://www.haowulab.org/software/makeCGI/model-based-cpg-islands-hg19.txt")
# promoters <- toGRanges("http://gattaca.imppc.org/regioner/data/UCSC.promoters.hg19.bed")
## ---- eval=FALSE--------------------------------------------------------------
# #NOT RUN
# cpgHMM <- filterChromosomes(cpgHMM, organism="hg", chr.type="canonical")
# promoters <- filterChromosomes(promoters, organism="hg", chr.type="canonical")
## ---- eval=FALSE--------------------------------------------------------------
# #NOT RUN
# cpgHMM_2K <- sample(cpgHMM, 2000)
#
# pt <- overlapPermTest(cpgHMM_2K, promoters, ntimes=1000, genome="hg19", count.once=TRUE)
# pt
# P-value: 0.000999000999000999
# Z-score: 60.5237
# Number of iterations: 1000
# Alternative: greater
# Evaluation of the original region set: 614
# Evaluation function: numOverlaps
# Randomization function: randomizeRegions
# mean(pt$permuted)
# 79.087
## ---- eval=FALSE--------------------------------------------------------------
# #NOT RUN
# plot(pt)
## ---- eval=FALSE--------------------------------------------------------------
# #NOT RUN
# set.seed(12345)
# download.file("http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsSydhHepg2Rad21IggrabUniPk.narrowPeak.gz", "Rad21.gz")
#
# download.file("http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsUwHepg2CtcfUniPk.narrowPeak.gz", "Ctcf.gz")
#
# HepG2_Rad21 <- toGRanges(gzfile("Rad21.gz"), header=FALSE)
# HepG2_Ctcf <- toGRanges(gzfile("Ctcf.gz"), header=FALSE)
#
# promoters <- toGRanges("http://gattaca.imppc.org/regioner/data/UCSC.promoters.hg19.bed")
## ---- eval=FALSE--------------------------------------------------------------
# #NOT RUN
# promoters <- filterChromosomes(promoters, organism="hg19")
# HepG2_Rad21_5K <- sample(HepG2_Rad21, 5000)
## ---- eval=FALSE--------------------------------------------------------------
# #NOT RUN
# pt_Rad21_5k_vs_Ctcf <- permTest(A=HepG2_Rad21_5K, B=HepG2_Ctcf, ntimes=1000,
# randomize.function=circularRandomizeRegions,
# evaluate.function=numOverlaps, count.once=TRUE,
# genome="hg19", mc.set.seed=FALSE, mc.cores=4)
#
# pt_Rad21_5k_vs_Prom <- permTest(A=HepG2_Rad21_5K, B=promoters, ntimes=1000,
# randomize.function=circularRandomizeRegions,
# evaluate.function=numOverlaps, count.once=TRUE,
# genome="hg19", mc.set.seed=FALSE, mc.cores=4)
#
# pt_Rad21_5k_vs_Ctcf
#
# pt_Rad21_5k_vs_Prom
#
# plot(pt_Rad21_5k_vs_Ctcf, main="Rad21_5K vs CTCF")
# plot(pt_Rad21_5k_vs_Prom, main="Rad21_5K vs Promoters")
## ---- eval=FALSE--------------------------------------------------------------
# #NOT RUN
# lz_Rad21_vs_Ctcf_1 <- localZScore(A=HepG2_Rad21_5K, B=HepG2_Ctcf,
# pt=pt_Rad21_5k_vs_Ctcf,
# window=1000, step=50, count.once=TRUE)
#
# lz_Rad21_vs_Prom_1 <- localZScore(A=HepG2_Rad21_5K, B=promoters,
# pt=pt_Rad21_5k_vs_Prom,
# window=1000, step=50, count.once=TRUE)
#
# plot(lz_Rad21_vs_Ctcf_1, main="Rad21_5k vs CTCF (1Kbp)")
# plot(lz_Rad21_vs_Prom_1, main="Rad21_5k vs promoters (1Kbp)")
#
## ---- eval=FALSE--------------------------------------------------------------
# #NOT RUN
# lz_Rad21_vs_Ctcf_2 <- localZScore(A=HepG2_Rad21_5K, B=HepG2_Ctcf,
# pt=pt_Rad21_5k_vs_Ctcf,
# window=10000, step=500, count.once=TRUE)
#
# lz_Rad21_vs_Prom_2 <- localZScore(A=HepG2_Rad21_5K, B=promoters,
# pt=pt_Rad21_5k_vs_Prom,
# window=10000, step=500, count.once=TRUE)
#
# plot(lz_Rad21_vs_Ctcf_2, main="Rad21_5k vs CTCF (10Kbp)")
# plot(lz_Rad21_vs_Prom_2, main="Rad21_5k vs promoters (10Kbp)")
## ---- sessionInfo-------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.