Nothing
#' @title Estimate And Plot Transcript Proportion Difference
#'
#' @description For any compared two replicates in each cell line,
#' the proportion of one transcript for genes that only include two
#' annotated transcripts can be different even flipped. This function
#' estimates and plots the proportion difference stratefied by detrended
#' logsignal. Means of absolute difference will be reported for three
#' levels of detrened logsignals. Average is used when multiple
#' two-replicate comparisons included.
#'
#' @param dat A \code{rnaseqcomp} S4 class object.
#' @param genes A vector of gene names corresponding to quantified
#' transcripts. Note that \code{length(genes)} should equal to
#' \code{nrow(dat@quantData[[1]])}.
#' @param step A number specifying the resolution on detrended logsignal
#' for calculation and plotting the proportion difference.
#' (default: 0.5)
#' @param thresholds A vector of two numbers define cutoffs for
#' three levels of detreded log signals, where one number summary
#' will be generated. (default: c(1, 6))
#' @param plotcell 1 or 2 indicating which cell line
#' will be plotted. If values other than 1 and 2, both cell
#' lines will be plotted. This value won't affect estimation for both
#' cell lines. (default: 1)
#' @param ... Parameters for base function \code{plot}.
#'
#' @import RColorBrewer
#'
#' @return
#' \item{plot}{2TX plots of quantification pipelines for
#' selected cell line by \code{plotcell}.}
#' \item{list}{A list of two matrices indicating the mean and standard error
#' of absolute proportion differences. Valuesa are based
#' on average of two cell lines.}
#'
#' @export
#' @examples
#' data(simdata)
#' condInfo <- factor(simdata$samp$condition)
#' repInfo <- factor(simdata$samp$replicate)
#' evaluationFeature <- rep(TRUE, nrow(simdata$meta))
#' calibrationFeature <- simdata$meta$house & simdata$meta$chr == 'chr1'
#' unitReference <- 1
#' dat <- signalCalibrate(simdata$quant, condInfo, repInfo, evaluationFeature,
#' calibrationFeature, unitReference, calibrationFeature2 = calibrationFeature)
#' plot2TX(dat,genes=simdata$meta$gene)
plot2TX <- function(dat, genes, step = 0.5, thresholds = c(1, 6), plotcell = 1,
...){
if(!is(dat,'rnaseqcomp'))
stop('"plot2TX" only plots class "rnaseqcomp".')
para <- list(...)
if(length(para)!=0 && any(!(names(para) %in%
c("xlim","ylim","xlab","ylab","lty","lwd","main","col"))))
stop('... contains non-used arguments.')
cdList <- list()
for(i in 1:2){
cdList[[i]] <- lapply(dat@quantData, function(x)
x[, dat@condInfo == levels(dat@condInfo)[i], drop=F])
}
tx2idx <- sapply(split(rownames(dat@quantData[[1]]), genes),
function(x) length(x) == 2)
M <- A <- list()
for(i in seq_along(dat@quantData)){
prop <- sig <- list()
for(k in seq_along(cdList)){
prop[[k]] <- sig[[k]] <- list()
for(j in seq_len(ncol(cdList[[k]][[i]]))){
cell.rep <- split(cdList[[k]][[i]][, j], genes)[tx2idx]
cell.rep.percent <- lapply(cell.rep, function(x){
if(sum(x, na.rm = T) == 0) x
else x / sum(x, na.rm = T)
})
prop[[k]][[j]] <- sapply(cell.rep.percent, function(x) x[1])
sig[[k]][[j]] <- sapply(cell.rep, function(x) x[1])
}
}
M[[i]] <- A[[i]] <- list()
for(k in seq_along(cdList)){
tmp1 <- tmp2 <- c()
for(m in 1:(length(prop[[k]]) - 1)){
for(n in (m+1):length(prop[[k]])){
tmp1 <- c(tmp1, prop[[k]][[m]] - prop[[k]][[n]])
tmp2 <- rbind(tmp2, cbind(sig[[k]][[m]], sig[[k]][[n]]))
}
}
M[[i]][[k]] <- tmp1
A[[i]][[k]] <- tmp2
}
}
if(!('xlab' %in% names(para))) xlab <- 'Detrended logSignal'
else xlab <- para$xlab
if(!('ylab' %in% names(para)))
ylab <- 'Mean difference of transcript proportions'
else ylab <- para$ylab
if(!('xlim' %in% names(para))) xlim <- c(0, 12)
else xlim <- para$xlim
if(!('ylim' %in% names(para))) ylim <- c(0, 1)
else ylim <- para$ylim
if(!('lty' %in% names(para))) lty <- 1
else lty <- para$lty
if(!('lwd' %in% names(para))) lwd <- 2
else lwd <- para$lwd
if(!('main' %in% names(para))) main <- "2TX plot"
else main <- para$main
if(!('col' %in% names(para))) {
if(length(dat@quantData)<3)
col <- c("blue","orange")[seq_along(dat@quantData)]
else {
col <- brewer.pal(min(length(dat@quantData), 8), "Set2")
}
}else col <- para$col
lty <- rep_len(lty, length(dat@quantData))
col <- rep_len(col, length(dat@quantData))
steps <- seq(xlim[1], xlim[2], step)
pnelist <- list()
for(k in 1:2){
pnelist[[k]] <- lapply(seq_len(length(M)), function(i){
sapply(seq_along(steps), function(j){
if(j==1){
idx <- rowMeans(A[[i]][[k]]) <= 2^steps[j] &
rowMeans(A[[i]][[k]]) != 0
}else{
idx <- rowMeans(A[[i]][[k]]) <= 2^steps[j] &
rowMeans(A[[i]][[k]]) > 2^steps[j-1]
}
if(sum(idx)==0) 0
else mean(abs(M[[i]][[k]][idx]))
})})
}
for(i in seq_along(dat@quantData)){
if(plotcell == 1){
ploty <- pnelist[[1]][[i]]
}else if(plotcell == 2){
ploty <- pnelist[[2]][[i]]
}else{
ploty <- pnelist[[1]][[i]]
ploty2 <- pnelist[[2]][[i]]
}
if(i == 1) {
plot(steps, ploty, type = 'o', lwd = lwd, col = col[i],
lty = lty[i], xlim = xlim, ylim = ylim,
xlab = xlab, ylab = ylab, main = main)
}else {
lines(steps, ploty, lwd = lwd, col = col[i], lty = lty[i],
type = 'o')
}
if(!(plotcell %in% 1:2)){
lines(steps, ploty2, lwd = lwd, col = col[i], lty = lty[i] + 2,
type = 'o')
}
}
box()
if(plotcell %in% 1:2){
legend('topright', names(dat@quantData),
lwd = lwd, col = col, lty = lty, bty = "n",cex = 1)
}else{
cells <- levels(dat@condInfo)
legend('topright', c(names(dat@quantData), cells),
lwd = lwd, col = c(col, rep("black", length(cells))),
lty = c(lty, lty[1], lty[1] + 2), bty = "n", cex = 1)
}
TX2s <- list()
for(k in 1:2){
TX2s[[k]] <- sapply(seq_len(length(M)), function(i){
reps <- ncol(cdList[[k]][[1]])
if(reps>2){
combs <- reps*(reps-1)/2
As <- matrix(rowMeans(A[[i]][[k]]),ncol=combs)
Ms <- matrix(M[[i]][[k]],ncol=combs)
ms <- sapply(seq_len(combs),function(j){
idx1 <- As[,j] <= 2^thresholds[1] &
As[,j] != 0
idx2 <- As[,j] < 2^thresholds[2] &
As[,j] > 2^thresholds[1]
idx3 <- As[,j] >= 2^thresholds[2]
c(mean(abs(Ms[idx1,j])),mean(abs(Ms[idx2,j])),
mean(abs(Ms[idx3,j])))
})
c(rowMeans(ms),apply(ms,1,sd)/sqrt(reps))
}else{
idx1 <- rowMeans(A[[i]][[k]]) <= 2^thresholds[1] &
rowMeans(A[[i]][[k]]) != 0
idx2 <- rowMeans(A[[i]][[k]]) < 2^thresholds[2] &
rowMeans(A[[i]][[k]]) > 2^thresholds[1]
idx3 <- rowMeans(A[[i]][[k]]) >= 2^thresholds[2]
c(mean(abs(M[[i]][[k]][idx1])), mean(abs(M[[i]][[k]][idx2])),
mean(abs(M[[i]][[k]][idx3])),
sd(abs(M[[i]][[k]][idx1])) / sqrt(length(idx1)),
sd(abs(M[[i]][[k]][idx2])) / sqrt(length(idx2)),
sd(abs(M[[i]][[k]][idx3])) / sqrt(length(idx3)))
}
})
}
TX2.mean <- (TX2s[[1]][1:3,] + TX2s[[2]][1:3,])/2
TX2.se <- sqrt((TX2s[[1]][4:6,]^2 + TX2s[[2]][4:6,]^2)/2)
colnames(TX2.mean) <- colnames(TX2.se) <- names(dat@quantData)
rownames(TX2.mean) <- rownames(TX2.se) <- c(paste0("A<=", thresholds[1]),
paste0(thresholds[1], "<A<", thresholds[2]),
paste0("A>=", thresholds[2]))
return(list(mean=round(TX2.mean, 2),se=round(TX2.se, 3)))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.