Nothing
#' Computes kernel matrix
#'
#' Adds the defined kernel to the operation graph for high dimensional pairwise data similarity
#'
#' @return Tensorflow op
#'
#' @param data cell x feature data matrix
#' @param data_shape number of features for data
#' @param labels cell x 1 annotation (label) vector
#' @param method Kernel to compute pairwise cell similarity
#' @param perplexity neighborhood parameter for gaussian kernel
#' @param diag indicator for self similarity
#'
#' @import tensorflow
#'
#' @keywords internal
compute_kernel_matrix = function(data, data_shape, labels=NULL, method=NULL, perplexity=30, diag="zero"){
## Defines the similarity matrix T used for asssociation loss
kernel = encoderModel_gaussian_kernel(data=tf$cast(data, tf$float64), dim=data_shape, perplexity=perplexity, diag=diag)
## Cast down for consistent data type
return(tf$cast(kernel, tf$float32))
}
#' encoder for scAlign
#'
#' Aligns paired data into a joint embedding space.
#'
#' @return Final alignment results
#'
#' @param FLAGS Tensorflow run arguments.
#' @param CV Model that is being run.
#' @param config Hardware configuration options.
#' @param num_labels Number of unique labels.
#' @param data_shape Dimensions of input data.
#' @param source_data Source data matrix (cell x feature).
#' @param source_labels Source data labels.
#' @param target_data Target data matrix (cell x feature).
#' @param target_labels Target data labels.
#'
#' @import tensorflow
#' @import purrr
#'
#' @keywords internal
encoderModel_train_encoder_multi = function(FLAGS, CV, config,
num_labels, data_shape,
names,
data,
labels){
## Define network structure
graph = tf$Graph()
with(graph$as_default(), {
print("Graph construction")
# Create function that defines the network.
model_function = partial(
match.fun(paste0("encoder_", FLAGS$encoder)),
input_size=data_shape,
complexity=3,
emb_size=FLAGS$emb_size,
dropout = FLAGS$dropout,
batch_norm=FLAGS$batch_norm)
## Define test first, also acts as network initializer.
## tf.get_variable() is only called when reuse=FALSE for named/var scopes...
test_in = tf$placeholder(tf$float32, shape(NULL,data_shape), 'test_in')
test_emb = encoderModel_data_to_embedding(model_function, test_in, is_training=FALSE)
test_logit = encoderModel_embedding_to_logit(test_emb, num_labels, is_training=FALSE)
## Set up inputs. Mini-batch via placeholder and dataset iterators
for(name in unique(names)){
with(tf$variable_scope(name), {
data_ph = tf$placeholder(tf$float32, shape(NULL, data_shape))
dataset = tf$data$Dataset$from_tensor_slices(data_ph)
dataset = dataset$shuffle(dim(data)[1])
dataset = dataset$`repeat`()
dataset = dataset$batch(FLAGS$unsup_batch_size)
iter = dataset$make_initializable_iterator()
batch = iter$get_next()
batch = tf$nn$l2_normalize(batch, axis=as.integer(1), name=paste0("data"))
})
emb = encoderModel_data_to_embedding(model_function, batch, is_training=TRUE, scope=paste0("_",name))
emb = tf$identity(emb, name=paste0(name,"_emb"))
}
if(FLAGS$ref %in% unique(names)){datasets=FLAGS$ref}else{datasets=unique(names)}
for(name_ref in datasets){
source_data = graph$get_tensor_by_name(paste0(name_ref,"/data:0"))
source_emb = graph$get_tensor_by_name(paste0(name_ref,"_emb:0"))
with(tf$name_scope(name_ref), {
for(name_target in setdiff(unique(names), name_ref)){
target_emb = graph$get_tensor_by_name(paste0(name_target,"_emb:0"))
with(tf$variable_scope(name_ref), {
print(paste0("Adding ", paste0(name_ref,"-",name_target)))
## Add source assoc loss
T_source = compute_kernel_matrix(data=source_data, data_shape=FLAGS$unsup_batch_size, method=FLAGS$kernel, perplexity=FLAGS$perplexity)
encoderModel_add_semisup_loss_data_driven(T_source,
source_emb,
target_emb,
FLAGS$unsup_batch_size, ## Replace for balanced case
walker_weight=FLAGS$walker_weight,
mode='source',
comp=FLAGS$prob_comp,
debug=FLAGS$verbose)
})
}
})
}
## Global training step
step = tf$train$get_or_create_global_step()
## Use a placeholder in the graph for user-defined learning rate
decay_step = tf$placeholder(tf$float32)
## Set up learning rate
t_learning_rate = .learning_rate(step, decay_step, FLAGS)
## Create training operation
train_op = encoderModel_create_train_op(t_learning_rate, step)
loss_op = tf$losses$get_total_loss()
summary_op = tf$summary$merge_all()
if(FLAGS$log.results == TRUE){
## Write summaries
summary_writer = tf$summary$FileWriter(file.path(paste0(FLAGS$logdir, '/model_', as.character(CV), "/")), graph)
## Save model
saver <- tf$train$Saver(max_to_keep=FLAGS$max_checkpoints,
keep_checkpoint_every_n_hours=FLAGS$keep_checkpoint_every_n_hours)
}
}) ## End graphdef
## Training scope
sess = NULL ## Appease R check
loss_tracker = c(); patience_count = 0;
with(tf$Session(graph=graph, config=config) %as% sess, {
## Set the logging level for tensorflow to only fatal issues
tf$logging$set_verbosity(tf$logging$FATAL)
## Define seed at the graph-level
## From docs: If the graph-level seed is set, but the operation seed is not:
## The system deterministically picks an operation seed in conjunction with
## the graph-level seed so that it gets a unique random sequence.
if(FLAGS$random_seed != 0){tf$set_random_seed(FLAGS$random_seed)}
## Normalize full data matrix
# if(FLAGS$full_norm == TRUE){
# source_data = sess$run(tf$nn$l2_normalize(source_data, axis=as.integer(1)))
# target_data = sess$run(tf$nn$l2_normalize(target_data, axis=as.integer(1)))
# }
# for(op in tf$get_default_graph()$get_operations()){print(op$name)}
## Initialize everything
tf$global_variables_initializer()$run()
print("Done random initialization")
## Create results dir
if(FLAGS$log.results == TRUE){
dir.create(file.path(paste0(FLAGS$logdir, '/model_', as.character(CV), '/train/')), showWarnings = FALSE)
}
# ## Assert that nothing more can be added to the graph
# #tf$get_default_graph().finalize()
## Initialize the Dataset iterators and feed correct arguments based on supervised vs. unsupervised
for(name in unique(names)){
iter = tf$get_default_graph()$get_operation_by_name(paste0(name,"/MakeIterator"))
placeholder = tf$get_default_graph()$get_tensor_by_name(paste0(name,"/Placeholder:0"))
sess$run(iter, feed_dict=dict(placeholder = data[which(names == name),]))
}
## Training!
for(step in seq_len(as.integer(FLAGS$max_steps))){
if(patience_count >= 0){
res = sess$run(list(train_op, summary_op, loss_op), feed_dict=dict(decay_step = FLAGS$decay_step))
}else{
res = sess$run(list(train_op, summary_op, loss_op), feed_dict=dict(decay_step = 100))
}
if(((step %% 100) == 0) | (step == 1)){ print(paste0("Step: ", step, " Loss: ", round(res[[3]], 4))) }
## Record loss
loss_tracker[step] = as.numeric(res[[3]])
# if(FLAGS$early_stopping == TRUE){
# patience_count = .early_stop(loss_tracker, step, patience_count, early_stopping_active=floor(FLAGS$max_steps/5), min_delta=0.01)
# }
#
# ## Exceeded patience, now ready to stop. (Patience is == TRUE once patience_count >= 50, otherwise [0-49])
# if(is.logical(patience_count)){
# FLAGS$max_steps = step + 1000 ## 1000 more steps with fast learning_rate decay
# FLAGS$early_stopping = FALSE
# patience_count = -1
# print("=========================================================")
# print("================ EARLY STOPPING TRIGGERED ===============")
# print("==FINALIZING OPTIMIZATION WITH FAST LEARNING RATE DECAY==")
# print("=========================================================")
# print(paste0("Step: ", step, " Loss: ", round(res[[3]], 4)))
# }
## Save embeddings and walker probabilities + summaries
if(((step %% FLAGS$log_every_n_steps == 0) | (step == 1) | (step == FLAGS$max_steps)) & FLAGS$log.results == TRUE){
if(step > 1){ print("==================== Saving results =====================") } ## Suppress first save
## Save embeddings
data_norm = sess$run(tf$nn$l2_normalize(data, axis=as.integer(1), name=paste0("data")))
emb = encoderModel_calc_embedding(sess, data_norm, test_emb, test_in, FLAGS)
write.table(emb, file.path(paste0(FLAGS$logdir, '/model_', as.character(CV), '/train/emb_activations_', as.character(step), '.csv')), sep=",", col.names=FALSE, row.names=FALSE)
## Write summaries
summary_writer$add_summary(res[[2]], step)
## Write out graph
saver$save(sess, file.path(paste0(FLAGS$logdir, '/model_', as.character(CV), '/train', '/model.ckpt')), as.integer(step))
}
## Complete training
if(step == FLAGS$max_steps){
if(FLAGS$log.results == FALSE){ emb = encoderModel_calc_embedding(sess, data, test_emb, test_in, FLAGS) }
sess$close()
return(list(emb, round(res[[3]], 4)))
}
}
})
sess$close()
return(NULL)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.