R/clonalHomeostasis.R

Defines functions clonalHomeostasis

Documented in clonalHomeostasis

#' Examining the clonal homeostasis
#'
#' This function calculates the space occupied by clonotype proportions. 
#' The grouping of these clonotypes is based on the parameter cloneTypes, 
#' at default, cloneTypes will group the clonotypes into bins of Rare = 0 
#' to 0.0001, Small = 0.0001 to 0.001, etc. To adjust the proportions, 
#' change the number or labeling of the cloneTypes paramter. If a matrix 
#' output for the data is preferred, set exportTable = TRUE.
#'
#' @examples
#' #Making combined contig data
#' x <- contig_list
#' combined <- combineTCR(x, rep(c("PX", "PY", "PZ"), each=2), 
#' rep(c("P", "T"), 3), cells ="T-AB")
#' clonalHomeostasis(combined, cloneCall = "gene")
#'
#' @param df The product of CombineContig() or expression2List()
#' @param cloneTypes The cutpoints of the proportions.
#' @param cloneCall How to call the clonotype - CDR3 gene (gene), CDR3 
#' nucleotide (nt) or CDR3 amino acid (aa), or CDR3 gene+nucleotide 
#' (gene+nt).
#' @param exportTable Exports a table of the data into the global 
#' environment in addition to the visualization
#' @import ggplot2
#' @importFrom stringr str_split
#' @importFrom reshape2 melt
#' @export
#' @return ggplot of the space occupied by the specific propotion of clonotypes
clonalHomeostasis <- function(df, cloneTypes = c(Rare = .0001, Small = .001, 
                        Medium = .01, Large = .1, Hyperexpanded = 1),
                        cloneCall = "gene+nt", exportTable = FALSE) {
    cloneTypes <- c(None = 0, cloneTypes)
    cloneCall <- theCall(cloneCall)
    df <- checkList(df)
    mat <- matrix(0, length(df), length(cloneTypes) - 1, 
                dimnames = list(names(df), 
                names(cloneTypes)[-1]))
    df <- lapply(df, '[[', cloneCall)
    for (i in seq_along(df)) {
        df[[i]] <- na.omit(df[[i]]) }
    fun <- function(x) { table(x)/length(x) }
    df <- lapply(df, fun)
    for (i in 2:length(cloneTypes)) {
        mat[,i-1] <- vapply(df, function (x) sum(x[x > cloneTypes[i-1] & x <= 
                            cloneTypes[i]]), FUN.VALUE = numeric(1))
        colnames(mat)[i-1] <- paste0(names(cloneTypes[i]), ' (', 
                                    cloneTypes[i-1], ' < X <= ', 
                                    cloneTypes[i], ')') }
    if (exportTable == TRUE) { return(mat) }
    mat_melt <- melt(mat)
    col <- length(unique(mat_melt$Var2))
    plot <- ggplot(mat_melt, aes(x=as.factor(Var1), y=value, fill=Var2)) +
        geom_bar(stat = "identity", position="fill", 
                    color = "black", lwd= 0.25) +
        scale_fill_manual(name = "Clonotype Group", 
                    values = colorblind_vector(col)) +
        xlab("Samples") +
        ylab("Relative Abundance") +
        theme_classic()
    return(plot)
}

Try the scRepertoire package in your browser

Any scripts or data that you put into this service are public.

scRepertoire documentation built on Nov. 8, 2020, 7 p.m.