Description Usage Arguments Details Value Examples
cluster_elements() takes as input a 'tbl' formatted as | <SAMPLE> | <TRANSCRIPT> | <COUNT> | <...> | and identify clusters in the data.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | cluster_elements(
.data,
.element = NULL,
.feature = NULL,
.abundance = NULL,
method,
of_samples = TRUE,
log_transform = TRUE,
action = "add",
...
)
## S4 method for signature 'spec_tbl_df'
cluster_elements(
.data,
.element = NULL,
.feature = NULL,
.abundance = NULL,
method,
of_samples = TRUE,
log_transform = TRUE,
action = "add",
...
)
## S4 method for signature 'tbl_df'
cluster_elements(
.data,
.element = NULL,
.feature = NULL,
.abundance = NULL,
method,
of_samples = TRUE,
log_transform = TRUE,
action = "add",
...
)
## S4 method for signature 'tidybulk'
cluster_elements(
.data,
.element = NULL,
.feature = NULL,
.abundance = NULL,
method,
of_samples = TRUE,
log_transform = TRUE,
action = "add",
...
)
## S4 method for signature 'SummarizedExperiment'
cluster_elements(
.data,
.element = NULL,
.feature = NULL,
.abundance = NULL,
method,
of_samples = TRUE,
log_transform = TRUE,
action = "add",
...
)
## S4 method for signature 'RangedSummarizedExperiment'
cluster_elements(
.data,
.element = NULL,
.feature = NULL,
.abundance = NULL,
method,
of_samples = TRUE,
log_transform = TRUE,
action = "add",
...
)
|
.data |
A 'tbl' formatted as | <SAMPLE> | <TRANSCRIPT> | <COUNT> | <...> | |
.element |
The name of the element column (normally samples). |
.feature |
The name of the feature column (normally transcripts/genes) |
.abundance |
The name of the column including the numerical value the clustering is based on (normally transcript abundance) |
method |
A character string. The cluster algorithm to use, at the moment k-means is the only algorithm included. |
of_samples |
A boolean. In case the input is a tidybulk object, it indicates Whether the element column will be sample or transcript column |
log_transform |
A boolean, whether the value should be log-transformed (e.g., TRUE for RNA sequencing data) |
action |
A character string. Whether to join the new information to the input tbl (add), or just get the non-redundant tbl with the new information (get). |
... |
Further parameters passed to the function kmeans |
maturing
identifies clusters in the data, normally of samples. This function returns a tibble with additional columns for the cluster annotation. At the moment only k-means (DOI: 10.2307/2346830) and SNN clustering (DOI:10.1016/j.cell.2019.05.031) is supported, the plan is to introduce more clustering methods.
Underlying method for kmeans do.call(kmeans(.data, iter.max = 1000, ...)
Underlying method for SNN .data Seurat::CreateSeuratObject() Seurat::ScaleData(display.progress = TRUE,num.cores = 4, do.par = TRUE) Seurat::FindVariableFeatures(selection.method = "vst") Seurat::RunPCA(npcs = 30) Seurat::FindNeighbors() Seurat::FindClusters(method = "igraph", ...)
A tbl object with additional columns with cluster labels
A tbl object with additional columns with cluster labels
A tbl object with additional columns with cluster labels
A tbl object with additional columns with cluster labels
A 'SummarizedExperiment' object
A 'SummarizedExperiment' object
1 | cluster_elements(tidybulk::counts_mini, sample, transcript, count, centers = 2, method="kmeans")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.