R/mb.2D.R

Defines functions mb.2D

Documented in mb.2D

## (c) 2004-2005 Yu Chuan Tai
## University of California, Berkeley
## Created: August 2004
## Last Modified: August 16, 2005


mb.2D <- function(object, k, mn, nu=NULL, Lambda=NULL, eta=NULL, c.grp, k.grp=NULL, 
mn.grp=NULL, r=FALSE, vec=FALSE, d=NULL, prop=0.02, T2.only=TRUE)
{

    res <- as.list(NULL)
    M <- NULL
    geneNames <- desc <- NULL
    if (is(object, "MAList") || is(object, "list")) 
          M <- object$M

    if (is(object, "marrayNorm"))
    {
          M <- object@maM
          geneNames <- rownames(M)
          desc <- object@maGnames@maLabels
    }

    if (is(object, "ExpressionSet"))
    {
          M <- exprs(object)
          geneNames <- rownames(M)               
    }

            
    if (is.null(M)) 
        M <- as.matrix(object)


    G <- nrow(M)
    if(missing(k)) stop("The number of time points is missing.")
    if(missing(mn)) stop("The sample sizes are missing.")
    if(missing(c.grp)) stop("Biological condition assignments are missing.")
    if(length(unique(c.grp)) != 2) stop("The biological condition group assignments are incorrect!")
    
     if(!is.null(mn))
     {
          max.mn1 <- max(mn[,1])
          max.mn2 <- max(mn[,2])
          if(ncol(mn) != length(unique(c.grp))) stop("The sample sizes are incorrect!")
          if(((max.mn1*k) != sum(c.grp==sort(unique(c.grp))[1])) || ((max.mn2*k) != sum(c.grp==sort(unique(c.grp))[2])))
                   stop("The sample sizes or the biological condition group assignments are incorrect!")
     }

    if(is.null(k.grp))
    { 
        k.grp <- rep(1:k, ncol(M)/k)
        cat("Time group assignments are set to default.","\n")
    }
    if(length(unique(k.grp)) != k) stop("The number of time points or the time group assignments are 
    incorrect")
    if(is.null(mn.grp))
    { 
        mn.grp <- rep(1:(ncol(M)/k), rep(k, ncol(M)/k))
        cat("Replicate group assignments are set to default.","\n")
    }
   
   
   mydata <- M
   indx <- order(c.grp, mn.grp, k.grp)
   M <- M[,indx]
  
   mis <- apply(!apply(M, 1, is.na), 2, sum)
   mis <- sum((mis/k-floor(mis/k)) !=0)
   if(mis>0) stop(mis, " genes may have within replicate missing values.")


   N <- apply(mn,1,sum)
 
          ## sample sizes across genes are the same
          ## only need to input the common sample size
          Sp <- apply(M, 1, matrix.cov, k, trans=FALSE, c.grp=c.grp)
          diagSp <- apply(Sp, 2, function(x) diag(matrix(x,ncol=k)))
          Sp.avg <- matrix(apply(Sp, 1, mean, na.rm=TRUE),ncol=k)
      
   

  if(is.null(nu)||is.null(Lambda))
  {
  
   nu.lim <- k+6
   
   if(!is.null(nu)) 
   {
     nu0 <- nu
     nu <- max(nu0, nu.lim)
     if(is.infinite(nu)& is.null(Lambda))  {Lambda <- Sp.avg} 
     if(is.finite(nu)& is.null(Lambda))    {Lambda <- (nu-k-1)*Sp.avg/nu}
     nu<- nu0
   }

   if(is.null(nu))
   {
     nu0 <- mean(sapply(1:k, function(x) squeezeVar(diagSp[x,], N-2)$df.prior))
     nu <- max(nu0, nu.lim)
     if(is.infinite(nu)& is.null(Lambda))  {Lambda <- Sp.avg} 
     if(is.finite(nu)& is.null(Lambda))    {Lambda <- (nu-k-1)*Sp.avg/nu}
     nu<- nu0
   }
  }
   
   max.n1 <- max(mn[,1])
   max.n2 <- max(mn[,2])
   xbar1 <- apply(M[, 1:(k*max.n1)], 1, function(x) 
   apply(matrix(x,  byrow=FALSE, ncol=max.n1),1,mean,na.rm=TRUE))
   xbar2 <- apply(M[, -c(1:(k*max.n1))], 1, function(x) 
   apply(matrix(x,  byrow=FALSE, ncol=max.n2),1,mean,na.rm=TRUE))
   if(r)
   {
        e1 <- sapply(1:G, function(x) matrix(M[x, 1:(k*max.n1)], byrow=FALSE, ncol=max.n1)-xbar1[,x])
        tune1 <- sapply(1:G, function(x) d * median(abs(e1[, x]),na.rm = TRUE)/0.6745)
        indx1 <- sapply(1:G, function(x) abs(e1[, x]) > tune1[x])
        na.indx1 <- sapply(1:G, function(x) c(1:(k * max.n1))[!is.na(indx1[,x])])
        wt1 <- matrix(rep(1, G * max.n1 * k), ncol = max.n1 * k)
        wt1 <- t(sapply(1:G, function(x) {wt1[x,][-na.indx1[,x]] <- 0
              wt1[x,]}))
        wt1 <- t(sapply(1:G, function(x) {wt1[x, ][na.indx1[,x]][indx1[,x][na.indx1[,x]]] <-
        tune1[x]/abs(e1[,x][na.indx1[,x]][indx1[,x][na.indx1[,x]]])
        wt1[x,]}))
        totalw1 <- sapply(1:G, function(x) apply(matrix(wt1[x,], byrow=FALSE, ncol=max.n1), 1, sum,
        na.rm=TRUE))
        w1 <- sapply(1:G, function(x) matrix(wt1[x,], byrow=FALSE, ncol=max.n1)/totalw1[,x])
        xbar1 <- sapply(1:G, function(x)
        apply(matrix(w1[, x] * M[x, 1:(k*max.n1)], byrow = FALSE, ncol = max.n1),1, sum,na.rm=TRUE))


        e2 <- sapply(1:G, function(x) matrix(M[x, -(1:(k*max.n1))], byrow=FALSE, ncol=max.n2)-xbar2[,x])
        tune2 <- sapply(1:G, function(x) d * median(abs(e2[, x]),na.rm = TRUE)/0.6745)
        indx2 <- sapply(1:G, function(x) abs(e2[, x]) > tune2[x])
        na.indx2 <- sapply(1:G, function(x) c(1:(k * max.n2))[!is.na(indx2[,x])])
        wt2 <- matrix(rep(1, G * max.n2 * k), ncol = max.n2 * k)
        wt2 <- t(sapply(1:G, function(x) {wt2[x,][-na.indx2[,x]] <- 0
              wt2[x,]}))
        wt2 <- t(sapply(1:G, function(x) {wt2[x, ][na.indx2[,x]][indx2[,x][na.indx2[,x]]] <-
        tune2[x]/abs(e2[,x][na.indx2[,x]][indx2[,x][na.indx2[,x]]])
        wt2[x,]})) 
        totalw2 <- sapply(1:G, function(x) apply(matrix(wt2[x,], byrow=FALSE, ncol=max.n2), 1, sum,
        na.rm=TRUE))
        w2 <- sapply(1:G, function(x) matrix(wt2[x,], byrow=FALSE, ncol=max.n2)/totalw2[,x])
        xbar2 <- sapply(1:G, function(x)
        apply(matrix(w2[, x] * M[x, -(1:(k*max.n1))], byrow = FALSE, ncol = max.n2),1, sum,na.rm=TRUE))
        wt <- cbind(wt1, wt2)
    }



   X <- xbar1-xbar2
   tol <- .Machine$double.eps
   if(is.finite(nu) & nu > tol) 
   {
     modSp <- sapply(1:G, function(x) ((N[x]-2)*matrix(Sp[,x],ncol=k)+nu*Lambda)/(N[x]-2+nu))
     if(is.null(eta) & (T2.only==FALSE))
     {
     sqrt.modSp <- apply(modSp, 2, function(x)
     svd(matrix(x,ncol=k))$u%*%diag(sqrt(svd(matrix(x,ncol=k))$d))%*%t(svd(matrix(x,ncol=k))$v))
     modt <- sapply(1:G, function(x) 
     (mn[x,1]^(-1)+mn[x,2]^(-1))^(-1/2)*solve(matrix(sqrt.modSp[,x],ncol=k))%*%X[,x])
     HotellingT2 <- apply(modt, 2, function(x) t(x)%*%x)
     }
     if(T2.only)
     HotellingT2 <- sapply(1:G, function(x)
     (mn[x,1]^(-1)+mn[x,2]^(-1))^(-1)*t(X[,x])%*%solve(matrix(modSp[,x],ncol=k))%*%X[,x])

     if(!is.null(eta) & (T2.only==FALSE))
         HotellingT2 <- sapply(1:G, function(x)
                n[x]*t(T1%*%xbar[,x])%*%solve(matrix(modS1[,x],ncol=k-1))%*%T1%*%xbar[,x])
   }

   if(is.infinite(nu))
   {
     modSp <- sapply(1:G, function(x) Lambda)
     if(is.null(eta) & (T2.only==FALSE))
     {
     sqrt.modSp <- apply(modSp, 2, function(x)
     svd(matrix(x,ncol=k))$u%*%diag(sqrt(svd(matrix(x,ncol=k))$d))%*%t(svd(matrix(x,ncol=k))$v))
     modt <- sapply(1:G, function(x)
     (mn[x,1]^(-1)+mn[x,2]^(-1))^(-1/2)*solve(matrix(sqrt.modSp[,x],ncol=k))%*%X[,x])
     HotellingT2 <- apply(modt, 2, function(x) t(x)%*%x)
     }
     if(T2.only)
     HotellingT2 <- sapply(1:G, function(x)
     (mn[x,1]^(-1)+mn[x,2]^(-1))^(-1)*t(X[,x])%*%solve(matrix(modSp[,x],ncol=k))%*%X[,x]) 

     if(!is.null(eta) & (T2.only==FALSE))
         HotellingT2 <- sapply(1:G, function(x)
                n[x]*t(T1%*%xbar[,x])%*%solve(matrix(modS1[,x],ncol=k-1))%*%T1%*%xbar[,x])
   }
   if(nu < tol & nu >=0)
   {
     modSp <- Sp
     if(is.null(eta) & (T2.only==FALSE))
     {
     sqrt.modSp <- apply(modSp, 2, function(x)
     svd(matrix(x,ncol=k))$u%*%diag(sqrt(svd(matrix(x,ncol=k))$d))%*%t(svd(matrix(x,ncol=k))$v))
     modt <- sapply(1:G, function(x)
     (mn[x,1]^(-1)+mn[x,2]^(-1))^(-1/2)*ginv(matrix(sqrt.modSp[,x],ncol=k))%*%X[,x])
     HotellingT2 <- apply(modt, 2, function(x) t(x)%*%x)
     }
     if(T2.only)
     HotellingT2 <- sapply(1:G, function(x)
     (mn[x,1]^(-1)+mn[x,2]^(-1))^(-1)*t(X[,x])%*%ginv(matrix(modSp[,x],ncol=k))%*%X[,x])

     if(!is.null(eta) & (T2.only==FALSE))
         HotellingT2 <- sapply(1:G, function(x)
                n[x]*t(T1%*%xbar[,x])%*%solve(matrix(modS1[,x],ncol=k-1))%*%T1%*%xbar[,x])
   }
   if(is.null(eta)& (T2.only==FALSE)) eta <- mean(sapply(1:k, function(x) tmixture.matrix(modt[x,], 
   sqrt(mn[,1]^(-1)+mn[,2]^(-1)), N+nu-2, prop, c(0.1, 4)^2/Lambda[x,x]))^(-1))

   res$M <- mydata
   res$prop <- prop
   res$nu <- nu
   res$Lambda <- Lambda
   res$eta <- eta

 
  if(nu < 0) stop("The estimation of prior degrees of freedom <0 !")
   
  MB <- NULL
  if(T2.only==FALSE)
  {
  if(is.finite(nu) & nu > tol)
  {
      MB1 <- log(prop,10)-log(1-prop,10)
      MB2 <- 0.5*k*(log(mn[,1]^(-1)+mn[,2]^(-1),10)-log(mn[,1]^(-1)+mn[,2]^(-1)+eta^(-1),10))
      MB3 <-0.5*(N+nu-1)*(log(N-2+nu+HotellingT2,10)-log(N-2+nu+((mn[,1]^(-1)+mn[,2]^(-1))/(mn[,1]^(-1)+mn[,2]^(-1)+eta^(-1)))*HotellingT2,10))
      MB <- MB1+MB2+MB3
   }
   if (is.infinite(nu))
   {
       MB1 <- log(prop,10)-log(1-prop,10)
       MB2 <- 0.5*k*(log(mn[,1]^(-1)+mn[,2]^(-1),10)-log(mn[,1]^(-1)+mn[,2]^(-1)+eta^(-1),10))
       MB3 <- 0.5*(mn[,1]^(-1)+mn[,2]^(-1)+eta^(-1))*HotellingT2/(mn[,1]^(-1)+mn[,2]^(-1))
       MB <- MB1+MB2+MB3
   }
   if (nu < tol & nu >= 0)
   {
       MB1 <- log(prop,10)-log(1-prop,10)
       MB2 <- 0.5*k*(log(mn[,1]^(-1)+mn[,2]^(-1),10)-log(mn[,1]^(-1)+mn[,2]^(-1)+eta^(-1),10))
       MB3 <- 0.5*(N-1)*(log(N-2+HotellingT2,10)-log(N-2+((mn[,1]^(-1)+mn[,2]^(-1))/(mn[,1]^(-1)+mn[,2]^(-1)+eta^(-1)))*HotellingT2,10))
       MB <- MB1+MB2+MB3
   }
   }
      unique.N <- unique(N)
      if(is.finite(nu) && nu > tol) 
           res$percent <- matrix(c(unique.N, round(100*nu/(nu+unique.N-2))), ncol=2)

      if(is.infinite(nu)) res$percent <- matrix(c(unique.N, 100), ncol=2)
      if(nu < tol && nu >=0) res$percent <- matrix(c(unique.N, 0), ncol=2)
      res$size <- mn
      res$con.group <- c.grp
      res$rep.group <- mn.grp
      res$time.group <- k.grp
      if(r) res$weights <- wt
      if(vec) res$modt <- modt
      res$HotellingT2 <- HotellingT2 
      res$MB <- MB
      
   res$pos.HotellingT2 <- order(HotellingT2, decreasing = TRUE)
   if(!is.null(MB)) res$pos.MB <- order(MB, decreasing = TRUE)
   res$geneNames <- geneNames
   res$descriptions <- desc
   new("MArrayTC", res)


}

Try the timecourse package in your browser

Any scripts or data that you put into this service are public.

timecourse documentation built on May 2, 2018, 2:36 a.m.