Description Usage Arguments Details Value References See Also Examples
Carry out a score test for differences between two Poisson-Tweedie groups.
1 2 3 4 5 6 7 8 9 10 | tweeDE(object, group, mc.cores = 1, pair = NULL, a = NULL, ...)
testPoissonTweedie(x, group, saveModel = FALSE, a = NULL, log = FALSE, ...)
MAplot(x, ...)
Vplot(x, ...)
## S3 method for class 'tweeDE'
print(x, n=6L, sort.by="pval", log2fc.cutoff=0, pval.adjust.cutoff=1, print=TRUE, ...)
## S3 method for class 'tweeDE'
MAplot(x, log2fc.cutoff=0, highlight=NULL, ...)
## S3 method for class 'tweeDE'
Vplot(x, log2fc.cutoff=0, pval.adjust.cutoff=1, highlight=NULL, ylab=expression(paste(-log[10], " Raw P-value")), ...)
|
object |
a |
group |
vector giving the experimental group/condition for each sample/library. |
mc.cores |
number of cpu cores to be used. This option is only
available when the 'multicore' package is installed and loaded first.
In such a case, if the default value of |
pair |
vector of two elements containing the representants of each of the two groups (default is 'NULL'). |
a |
for 'tweeDE' function, numerical vector with values strictly less than 1. It allows to fix the shape parameter 'a' during differential expression tests for each of the genes (rows of 'object'). for 'testPoissonTweedie' function, numeral value strictly less than 1 which fixes the shape parameter 'a' for the test. |
n |
maximum number of genes printed. |
sort.by |
character string, indicating whether genes should be ranked by
their P-value ( |
log2fc.cutoff |
cutoff on the minimum value of the log2 fold change. |
pval.adjust.cutoff |
cutoff on the maximum adjusted P-value (FDR). |
print |
logical; it indicates whether the output should be printed on the terminal. |
highlight |
list of arguments to the |
ylab |
label on the y-axis of the volcano plot set by default to -log10 of the raw P-value which is what this plot displays on that axis. |
x |
object returned by the function |
saveModel |
logical indicating whether the results of fitting the model should be saved or not (default is 'FALSE'). |
log |
logical (default is FALSE). If FALSE, the tested Null Hypothesis states that the difference between the means is 0 while, if TRUE, it states that the quotient between the logarithm of means is equal to 1. For this last case, the standard error is computed using the Delta Method. |
... |
additional arguments. |
'testPoissonTweedie' performs the test for a vector of counts.
'tweeDE' performs the test for a whole 'data.frame'. The P-values are then corrected using the Benjamini and Hochberg method.
'testPoissonTweedie' returns a list with:
'mean': means for each group 'pvalue': p-value for the test
'tweeDE' returns a 'data.frame' with columns
'overallMean': overall mean counts 'meanA': mean counts of the first group 'meanB': mean counts of the second group 'log2fc': logarigthm (base 2) of the fold-change (second group vs. first group) 'pval': p-value for the test 'pval.adjust': adjusted p-value using Benjamini-Hochberg method
Esnaola M, Puig P, Gonzalez D, Castelo R and Gonzalez JR (2013). A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments. BMC Bioinformatics 14: 254
A.H. El-Shaarawi, R. Zhu, H. Joe (2010). Modelling species abundance using the Poisson-Tweedie family. Environmetrics 22, pages 152-164.
P. Hougaard, M.L. Ting Lee, and G.A. Whitmore (1997). Analysis of overdispersed count data by mixtures of poisson variables and poisson processes. Biometrics 53, pages 1225-1238.
normalizeCounts
mlePoissonTweedie
1 2 3 4 5 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.