Nothing
#' Calculate Spearman beta
#'
#' @description
#' `spearman.beta()` calculates the Spearman beta and is used in chapter 11 of "Applied Nonparametric Statistical Methods" (5th edition)
#'
#' @param y Numeric vector of same length as x
#' @param x Numeric vector of same length as y
#' @param H0 Null hypothesis value (defaults to `NULL`)
#' @param alternative Type of alternative hypothesis (defaults to `two.sided`)
#' @param CI.width Confidence interval width (defaults to `0.95`)
#' @param max.exact.cases Maximum number of cases allowed for exact calculations (defaults to `10`)
#' @param nsims.mc Number of Monte Carlo simulations to be performed (defaults to `100000`)
#' @param seed Random number seed to be used for Monte Carlo simulations (defaults to `NULL`)
#' @param do.asymp Boolean indicating whether or not to perform asymptotic calculations (defaults to `FALSE`)
#' @param do.exact Boolean indicating whether or not to perform exact calculations (defaults to `TRUE`)
#' @param do.CI Boolean indicating whether or not to perform confidence interval calculations (defaults to `FALSE`)
#' @param do.mc Boolean indicating whether or not to perform Monte Carlo calculations (defaults to `FALSE`)
#' @returns An ANSMstat object with the results from applying the function
#' @examples
#' # Example 11.3 from "Applied Nonparametric Statistical Methods" (5th edition)
#' spearman.beta(ch11$reportedtime, ch11$parentlimit, H0 = 1)
#' spearman.beta(ch11$reportedtime, ch11$parentlimit, H0 = 1, do.CI = TRUE)
#'
#' @importFrom stats lm complete.cases median approx qnorm
#' @export
spearman.beta <-
function(y, x, H0 = NULL, alternative = c("two.sided", "less", "greater"),
CI.width = 0.95, max.exact.cases = 10, nsims.mc = 100000,
seed = NULL, do.asymp = FALSE, do.exact = TRUE, do.CI = FALSE,
do.mc = FALSE) {
stopifnot(is.numeric(y), is.numeric(x), length(y) == length(x),
((is.numeric(H0) && length(H0) == 1) | is.null(H0)),
is.numeric(CI.width), length(CI.width) == 1,
CI.width > 0, CI.width < 1,
is.numeric(max.exact.cases), length(max.exact.cases) == 1,
is.numeric(nsims.mc), length(nsims.mc) == 1,
is.numeric(seed) | is.null(seed),
is.logical(do.asymp) == TRUE, is.logical(do.exact) == TRUE,
is.logical(do.CI) == TRUE, is.logical(do.mc) == TRUE)
alternative <- match.arg(alternative)
#labels
varname1 <- paste0(deparse(substitute(y)), " ~ ", deparse(substitute(x)))
varname2 <- NULL
varname3 <- NULL
#unused arguments
cont.corr <- NULL
#default outputs
pval <- NULL
pval.stat <- NULL
pval.note <- NULL
pval.asymp <- NULL
pval.asymp.stat <- NULL
pval.asymp.note <- NULL
pval.exact <- NULL
pval.exact.stat <- NULL
pval.exact.note <- NULL
pval.mc <- NULL
pval.mc.stat <- NULL
pval.mc.note <- NULL
actualCIwidth.exact <- NULL
CI.exact.lower <- NULL
CI.exact.upper <- NULL
CI.exact.note <- NULL
CI.asymp.lower <- NULL
CI.asymp.upper <- NULL
CI.asymp.note <- NULL
CI.mc.lower <- NULL
CI.mc.upper <- NULL
CI.mc.note <- NULL
CI.sample.lower <- NULL
CI.sample.upper <- NULL
CI.sample.note <- NULL
stat.note <- NULL
#prepare
complete.cases.id <- complete.cases(x, y)
y <- y[complete.cases.id] #remove missing cases
x <- x[complete.cases.id] #remove missing cases
y <- round(y, -floor(log10(sqrt(.Machine$double.eps)))) #handle floating point issues
x <- round(x, -floor(log10(sqrt(.Machine$double.eps)))) #handle floating point issues
x.c <- x - median(x)
n <- length(y)
#calculate estimate of beta
outer.y <- outer(y, y, "-")
outer.x.c <- outer(x.c, x.c, "-")
bvals <- outer.y / outer.x.c
bvals <- sort(bvals[upper.tri(bvals)])
mid.b <- c(NA, bvals[1:(length(bvals) - 1)] + diff(bvals) / 2, NA)
T <- sum(1:n)
for (i in 2:(length(mid.b) - 1)){
T[i] <- sum(x.c * rank(y - mid.b[i] * x.c))
}
T[length(mid.b)] <- -T[1]
rs <- T / max(T)
stat <- approx(T[!duplicated(T)], mid.b[!duplicated(T)], xout=0)$y
statlabel <- "Spearman beta"
if (!is.null(H0)){
spearman.test <- spearman(x.c, y - H0 * x.c, alternative = alternative,
max.exact.cases = max.exact.cases,
nsims.mc = nsims.mc, seed = seed,
do.asymp = do.asymp, do.exact = do.exact,
do.mc = do.mc)
pval <- spearman.test$pval
pval.stat <- spearman.test$pval.stat
pval.note <- spearman.test$pval.note
pval.asymp <- spearman.test$pval.asymp
pval.asymp.stat <- spearman.test$stat
pval.asymp.note <- spearman.test$pval.asymp.note
pval.exact <- spearman.test$pval.exact
pval.exact.stat <- spearman.test$stat
pval.exact.note <- spearman.test$pval.exact.note
pval.mc <- spearman.test$pval.mc
pval.mc.stat <- spearman.test$stat
pval.mc.note <- spearman.test$pval.mc.note
stat.note <- spearman.test$stat.note
}
#CI from exact/asymptotic distribution
if (do.CI){
if (n <= max.exact.cases){
combins <- perms(n)
n.perms <- dim(combins)[1]
corrs <- rep(NA, n.perms)
for (i in 1:n.perms){
corrs[i] <- cor(combins[i,], 1:n, method = "spearman")
}
corrs.dist <- cumsum(table(corrs) / n.perms)
corr.CI.limit <- as.numeric(names(corrs.dist[sum(corrs.dist <= (1 - CI.width) / 2)]))
corr.CI.p <- corrs.dist[sum(corrs.dist <= (1 - CI.width) / 2)][[1]]
CI.sample.upper <- approx(rs[!duplicated(rs)], c(NA, bvals)[!duplicated(rs)], xout = corr.CI.limit)$y
CI.sample.lower <- approx(rs[!duplicated(rs)], c(bvals, NA)[!duplicated(rs)], xout = -corr.CI.limit)$y
actualCIwidth.exact <- 1 - corr.CI.p * 2
}else{
z <- qnorm((1 - CI.width) / 2, lower.tail = FALSE)
r.approx <- z / sqrt(n - 1)
CI.sample.lower <- approx(rs[!duplicated(rs)], c(bvals, NA)[!duplicated(rs)], xout = r.approx)$y
CI.sample.upper <- approx(rs[!duplicated(rs)], c(NA, bvals)[!duplicated(rs)], xout = -r.approx)$y
}
}
#create hypotheses
if (!is.null(H0)){
H0val <- H0
H0 <- paste0("H0: Spearman beta for ", varname1, " is ", H0val)
if (alternative == "two.sided"){
H0 <- paste0(H0, "\nH1: Spearman beta for ", varname1, " is not ",
H0val)
}else if(alternative == "greater"){
H0 <- paste0(H0, "\nH1: Spearman beta for ", varname1,
" is greater than ", H0val)
}else{
H0 <- paste0(H0, "\nH1: Spearman beta for ", varname1, " is less than ",
H0val)
}
H0 <- paste0(H0, "\n")
}
#return
result <- list(title = "Spearman beta", varname1 = varname1,
varname2 = varname2, varname3 = varname3, stat = stat,
statlabel = statlabel, H0 = H0,
alternative = alternative, cont.corr = cont.corr, pval = pval,
pval.stat = pval.stat, pval.note = pval.note,
pval.exact = pval.exact, pval.exact.stat = pval.exact.stat,
pval.exact.note = pval.exact.note, targetCIwidth = CI.width,
actualCIwidth.exact = actualCIwidth.exact,
CI.exact.lower = CI.exact.lower,
CI.exact.upper = CI.exact.upper, CI.exact.note = CI.exact.note,
pval.asymp = pval.asymp, pval.asymp.stat = pval.asymp.stat,
pval.asymp.note = pval.asymp.note,
CI.asymp.lower = CI.asymp.lower,
CI.asymp.upper = CI.asymp.upper, CI.asymp.note = CI.asymp.note,
pval.mc = pval.mc, pval.mc.stat = pval.mc.stat,
nsims.mc = nsims.mc, pval.mc.note = pval.mc.note,
CI.mc.lower = CI.mc.lower, CI.mc.upper = CI.mc.upper,
CI.mc.note = CI.mc.note, CI.sample.lower = CI.sample.lower,
CI.sample.upper = CI.sample.upper, CI.sample.note = CI.sample.note,
stat.note = stat.note)
class(result) <- "ANSMstat"
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.