R/ttestBF.R

Defines functions ttestBF

Documented in ttestBF

##' This function computes Bayes factors, or samples from the posterior, for
##' one- and two-sample designs.
##'
##' The Bayes factor provided by \code{ttestBF} tests the null hypothesis that
##' the mean (or mean difference) of a normal population is \eqn{\mu_0}{mu0}
##' (argument \code{mu}). Specifically, the Bayes factor compares two
##' hypotheses: that the standardized effect size is 0, or that the standardized
##' effect size is not 0. For one-sample tests, the standardized effect size is
##' \eqn{(\mu-\mu_0)/\sigma}{(mu-mu0)/sigma}; for two sample tests, the
##' standardized effect size is \eqn{(\mu_2-\mu_1)/\sigma}{(mu2-mu1)/sigma}.
##'
##' A noninformative Jeffreys prior is placed on the variance of the normal
##' population, while a Cauchy prior is placed on the standardized effect size.
##' The \code{rscale} argument controls the scale of the prior distribution,
##' with \code{rscale=1} yielding a standard Cauchy prior. See the references
##' below for more details.
##'
##' For the \code{rscale} argument, several named values are recognized:
##' "medium", "wide", and "ultrawide". These correspond
##' to \eqn{r} scale values of \eqn{\sqrt{2}/2}{sqrt(2)/2}, 1, and \eqn{\sqrt{2}}{sqrt(2)}
##' respectively.
##'
##' The Bayes factor is computed via Gaussian quadrature.
##' @title Function for Bayesian analysis of one- and two-sample designs
##' @param x a vector of observations for the first (or only) group
##' @param y a vector of observations for the second group (or condition, for
##'   paired)
##' @param formula for independent-group designs, a (optional) formula
##'   describing the model
##' @param mu for one-sample and paired designs, the null value of the mean (or
##'   mean difference)
##' @param nullInterval optional vector of length 2 containing lower and upper bounds of an interval hypothesis to test, in standardized units
##' @param paired if \code{TRUE}, observations are paired
##' @param data for use with \code{formula}, a data frame containing all the
##'   data
##' @param rscale prior scale.  A number of preset values can be given as
##'   strings; see Details.
##' @param posterior if \code{TRUE}, return samples from the posterior instead
##'   of Bayes factor
##' @param callback callback function for third-party interfaces
##' @param ... further arguments to be passed to or from methods.
##' @return If \code{posterior} is \code{FALSE}, an object of class
##'   \code{BFBayesFactor} containing the computed model comparisons is
##'   returned. If \code{nullInterval} is defined, then two Bayes factors will
##'   be computed: The Bayes factor for the interval against the null hypothesis
##'   that the standardized effect is 0, and the corresponding Bayes factor for
##'   the compliment of the interval.
##'
##'   If \code{posterior} is \code{TRUE}, an object of class \code{BFmcmc},
##'   containing MCMC samples from the posterior is returned.
##' @export
##' @keywords htest
##' @author Richard D. Morey (\email{richarddmorey@@gmail.com})
##' @references Morey, R. D., Rouder, J. N., Pratte, M. S., & Speckman, P. L.
##'   (2011). Using MCMC chain outputs to efficiently estimate Bayes factors.
##'   Journal of Mathematical Psychology, 55, 368-378
##'
##'   Morey, R. D. & Rouder, J. N. (2011). Bayes Factor Approaches for Testing
##'   Interval Null Hypotheses. Psychological Methods, 16, 406-419
##'
##'   Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G.
##'   (2009). Bayesian t-tests for accepting and rejecting the null hypothesis.
##'   Psychonomic Bulletin & Review, 16, 225-237
##'
##' @note The default priors have changed from 1 to \eqn{\sqrt{2}/2}. The
##'   factor of \eqn{\sqrt{2}}  is to be consistent
##'   with Morey et al. (2011) and
##'   Rouder et al. (2012), and the factor of \eqn{1/2} in both is to better scale the
##'   expected effect sizes; the previous scaling put more weight on larger
##'   effect sizes. To obtain the same Bayes factors as Rouder et al. (2009),
##'   change the prior scale to 1.
##' @examples
##' ## Sleep data from t test example
##' data(sleep)
##' plot(extra ~ group, data = sleep)
##'
##' ## paired t test
##' ttestBF(x = sleep$extra[sleep$group==1], y = sleep$extra[sleep$group==2], paired=TRUE)
##'
##' ## Sample from the corresponding posterior distribution
##' samples = ttestBF(x = sleep$extra[sleep$group==1],
##'            y = sleep$extra[sleep$group==2], paired=TRUE,
##'            posterior = TRUE, iterations = 1000)
##' plot(samples[,"mu"])
##' @seealso \code{\link{integrate}}, \code{\link{t.test}}


ttestBF <- function(x = NULL, y = NULL, formula = NULL, mu = 0, nullInterval = NULL,
                    paired = FALSE, data = NULL, rscale="medium", posterior=FALSE, callback = function(...) as.integer(0), ...){

  data <- marshallTibble(data)

  if(!is.null(x) & !is.null(formula)) stop("Only one of x or formula should be defined.")

  if(!is.null(x) | !is.null(y))
    if(any(is.na(c(x,y))) | any(is.infinite(c(x,y))))
      stop("x or y must not contain missing or infinite values.")

  if(!is.null(nullInterval)){
    nullInterval = range(nullInterval)
    if(identical(nullInterval,c(-Inf,Inf))){
      nullInterval = NULL
    }
  }

  checkCallback(callback,as.integer(0))

  if( (is.null(formula) & is.null(y)) | (!is.null(y) & paired) ){ # one sample
    if(paired){
      # check that the two vectors have same length
      if(length(x)!=length(y)) stop("Length of x and y must be the same if paired=TRUE.")
      x = x - y
    }
    return( ttestBF_oneSample(x = x, mu = mu,
                              nullInterval = nullInterval,
                              rscale = rscale, posterior = posterior,
                              callback = callback, ... ) )
  }
  if(!is.null(y) & !paired){ # Two-sample; create formula
    if(!is.null(data) | !is.null(formula)) stop("Do not specify formula or data if x and y are specified.")
    data = data.frame(y = c(x,y),
                      group = factor(c(rep("x",length(x)),rep("y",length(y))))
                      )
    formula = y ~ group
  }
  if(!is.null(formula)){ # Two-sample
    if(paired) stop("Cannot use 'paired' with formula.")
    if(is.null(data)) stop("'data' needed for formula.")
    if(mu != 0) stop("Use of nonzero null hypothesis not implemented for independent samples test.")
    return(ttestBF_indepSample(formula = formula, data = data, mu = mu,
                               nullInterval = nullInterval, rscale = rscale,
                               posterior = posterior, callback = callback, ... ))
  }else{
    stop("Insufficient arguments to perform t test.")
  }
}

Try the BayesFactor package in your browser

Any scripts or data that you put into this service are public.

BayesFactor documentation built on May 29, 2024, 3:09 a.m.