R/hpd.R

Defines functions hpd hpd.coda

Documented in hpd hpd.coda

hpd <- function(data, alpha = 0.05, ...) {
  if (!is.data.frame(data)) 
    data <- read.table(data, header = TRUE)
  nc <- NCOL(data)
  data <- matrix(unlist(data), ncol = nc)
  data <- data[, -1]
  hpd.target <- function(boundary, alpha, fdens, ...) {
    # Constraint 1: log f(lower|x) = log f(upper|x) -- operate on log scale (more
    # stable)
    f1 <- log(fdens(boundary[1], ...)) - log(fdens(boundary[2], ...))
    
    # Contraint 2: P(param \in C) = 1-alpha (use integrate -- more stable than
    # ppost) f2 <- ppost(boundary[1],...) - ppost(boundary[2]) Important: the dpost
    # function has to be vectorized
    f2 <- integrate(fdens, lower = boundary[1], upper = boundary[2], ...)$val - 
      (1 - alpha)
    
    # Convert multivariate root finding to minimization problem (this can be
    # numerically instable)
    return(f1^2 + f2^2)
  }
  
  dens <- apply(data, FUN = density, MARGIN = 2)
  fdens <- lapply(dens, FUN = function(obj) {
    splinefun(obj$x, obj$y)
  })
  start <- apply(data, MARGIN = 2, FUN = quantile, c(0.5 * alpha, 1 - 0.5 * alpha))
  opt <- function(j, ...) {
    optim(start[, j], hpd.target, alpha = alpha, fdens = fdens[[j]], ...)$par
  }
  res <- lapply(1:(nc - 1), FUN = opt)
  res <- matrix(unlist(res), ncol = 2, byrow = TRUE)
  res <- data.frame(lower = res[, 1], upper = res[, 2])
  return(res)
}

hpd.coda <- function(data, alpha = 0.05) {
  if (!is.data.frame(data)) 
    data <- read.table(data, header = TRUE)
  nc <- NCOL(data)
  data <- matrix(unlist(data), ncol = nc)
  data <- data[, -1]
  prob <- 1 - alpha
  data <- as.mcmc(data)
  res <- HPDinterval(data, prob = prob)
  
  return(data.frame(lower = res[, 1], upper = res[, 2]))
}

Try the BayesX package in your browser

Any scripts or data that you put into this service are public.

BayesX documentation built on Aug. 24, 2019, 9:03 a.m.