Description Details Author(s) References See Also
To be fitted an FROC model.
This data was calculated from an example dataset which appears in Chakraborty's JAFROC.
The author has ordered
the dataset dataList.Chakra.Web
(or dd
)
so that the modality ID means the order of AUC.
For example modality ID = 1 means its AUC is the highest.
modalityID = 2 means that
its AUC is the secondly high AUC.
So, let A_1,A_2,A_3,A_4,A_5 be the AUCs for the modality ID 1,2,3,4,5, respectively.
Then it follows that
A_1 > A_2 > A_3 > A_4 > A_5.
So, modality ID in this dataset corresponds
the modality ID
of dataList.Chakra.Web
(or dd
)
as (4 2 1 5 3).
That is, let us denote the modality ID of this dataset
(1',2',3',4',5') and
let modality ID
of the dataset named dataList.Chakra.Web
(or dd
) be (1,2,3,4,5).
Then we can write the correspondence as follows;
(1',2',3',4',5') = (4, 2, 1, 5, 3).
Contents:
Multiple readers and Multiple modalities case, i.e., MRMC case
—————————————————————————————————
ModalityID | ReaderID | Confidence levels | No. of false alarms | No. of hits. |
q | m | c | f | h |
--------------------- | -------------------- | ----------------------------- | ------------------------- | ----------------------- |
1 | 1 | 5 | 1 | 61 |
1 | 1 | 4 | 4 | 19 |
1 | 1 | 3 | 18 | 12 |
1 | 1 | 2 | 21 | 9 |
1 | 1 | 1 | 23 | 3 |
1 | 2 | 5 | 1 | 16 |
1 | 2 | 4 | 1 | 29 |
1 | 2 | 3 | 0 | 34 |
1 | 2 | 2 | 11 | 1 |
1 | 2 | 1 | 35 | 0 |
1 | 3 | 5 | 6 | 52 |
1 | 3 | 4 | 14 | 29 |
1 | 3 | 3 | 37 | 10 |
1 | 3 | 2 | 36 | 4 |
1 | 3 | 1 | 18 | 3 |
1 | 4 | 5 | 0 | 10 |
1 | 4 | 4 | 2 | 16 |
1 | 4 | 3 | 4 | 23 |
1 | 4 | 2 | 18 | 43 |
1 | 4 | 1 | 25 | 15 |
2 | 1 | 5 | 1 | 52 |
2 | 1 | 4 | 1 | 25 |
2 | 1 | 3 | 21 | 13 |
2 | 1 | 2 | 24 | 4 |
2 | 1 | 1 | 23 | 1 |
2 | 2 | 5 | 1 | 27 |
2 | 2 | 4 | 1 | 28 |
2 | 2 | 3 | 5 | 29 |
2 | 2 | 2 | 30 | 1 |
2 | 2 | 1 | 40 | 0 |
2 | 3 | 5 | 2 | 53 |
2 | 3 | 4 | 19 | 29 |
2 | 3 | 3 | 31 | 13 |
2 | 3 | 2 | 56 | 2 |
2 | 3 | 1 | 42 | 4 |
2 | 4 | 5 | 2 | 9 |
2 | 4 | 4 | 0 | 16 |
2 | 4 | 3 | 2 | 22 |
2 | 4 | 2 | 30 | 43 |
2 | 4 | 1 | 32 | 14 |
3 | 1 | 5 | 0 | 50 |
3 | 1 | 4 | 4 | 30 |
3 | 1 | 3 | 20 | 11 |
3 | 1 | 2 | 29 | 5 |
3 | 1 | 1 | 21 | 1 |
3 | 2 | 5 | 0 | 15 |
3 | 2 | 4 | 0 | 29 |
3 | 2 | 3 | 6 | 29 |
3 | 2 | 2 | 15 | 1 |
3 | 2 | 1 | 22 | 0 |
3 | 3 | 5 | 1 | 39 |
3 | 3 | 4 | 15 | 31 |
3 | 3 | 3 | 18 | 8 |
3 | 3 | 2 | 31 | 10 |
3 | 3 | 1 | 19 | 3 |
3 | 4 | 5 | 1 | 10 |
3 | 4 | 4 | 2 | 8 |
3 | 4 | 3 | 4 | 25 |
3 | 4 | 2 | 16 | 45 |
3 | 4 | 1 | 17 | 14 |
4 | 1 | 5 | 0 | 35 |
4 | 1 | 4 | 2 | 29 |
4 | 1 | 3 | 19 | 18 |
4 | 1 | 2 | 23 | 9 |
4 | 1 | 1 | 18 | 0 |
4 | 2 | 5 | 0 | 17 |
4 | 2 | 4 | 2 | 27 |
4 | 2 | 3 | 6 | 24 |
4 | 2 | 2 | 10 | 0 |
4 | 2 | 1 | 30 | 0 |
4 | 3 | 5 | 2 | 34 |
4 | 3 | 4 | 25 | 33 |
4 | 3 | 3 | 40 | 7 |
4 | 3 | 2 | 29 | 13 |
4 | 3 | 1 | 24 | 2 |
4 | 4 | 5 | 1 | 12 |
4 | 4 | 4 | 1 | 16 |
4 | 4 | 3 | 4 | 21 |
4 | 4 | 2 | 24 | 35 |
4 | 4 | 1 | 32 | 15 |
5 | 1 | 5 | 1 | 43 |
5 | 1 | 4 | 7 | 29 |
5 | 1 | 3 | 13 | 11 |
5 | 1 | 2 | 28 | 6 |
5 | 1 | 1 | 19 | 0 |
5 | 2 | 5 | 0 | 18 |
5 | 2 | 4 | 1 | 29 |
5 | 2 | 3 | 7 | 21 |
5 | 2 | 2 | 7 | 0 |
5 | 2 | 1 | 31 | 0 |
5 | 3 | 5 | 7 | 43 |
5 | 3 | 4 | 15 | 29 |
5 | 3 | 3 | 28 | 6 |
5 | 3 | 2 | 41 | 7 |
5 | 3 | 1 | 9 | 1 |
5 | 4 | 5 | 0 | 10 |
5 | 4 | 4 | 2 | 14 |
5 | 4 | 3 | 5 | 19 |
5 | 4 | 2 | 24 | 32 |
5 | 4 | 1 | 31 | 23 |
—————————————————————————————————
Issei Tsunoda tsunoda.issei1111@gmail.com
Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data, Dev P. Chakraborty.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.