Description Usage Arguments Details Value See Also Examples
View source: R/CoronaVirus_Disease_2019.R
Even if we test all people, the result is true with very low probabilties.
1 | CoronaVirus_Disease_2019_prevalence(pre, se, sp)
|
pre |
Prevalence of population |
se |
Sensitivity of a diagnostic test |
sp |
Specificity of a diagnostic test |
————————————————————————–
Diagnosis \ truth | Diseased | Non-diseased |
----------------------- | ----------------------- | ------------- |
Positive | se*n | (N-n)(1-sp) |
Negative | (1-se)*n | (N-n)sp |
----------------------- | ----------------------- | ------------- |
n | N-n | |
————————————————————————-
For example,
if prevalence is 0.0001,
population is 10000,
specificity = 0.8,
sensitivity = 0.9,
then the table is the following.
We can calculates the probability of the event that positive-diagnosis correctly detects the diseased patient is
\frac{9}{1998 + 9} = 9/(1998+9) = 0.00448
————————————————————————–
Diagnosis \ truth | Diseased | Non-diseased |
----------------------- | ----------------------- | ------------- |
Positive | 9 | 1998 |
Negative | 1 | 7992 |
----------------------- | ----------------------- | ------------- |
n = 10 | N-n=10000-10 | |
————————————————————————-
same as CoronaVirus_Disease_2019()
Prob(Truth = diseased | Diagnosis = Positive) = \frac{Se\times pre}{Se \times pre + (1-pre)\times(1-sp)}
where we denotes the conditional probability measure of an event A given the assumed occurrence of G as an usual manner
P(A|G):= \frac{P(A \cap G)}{P(G)}.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | CoronaVirus_Disease_2019_prevalence(0.0001, 0.9,0.8)
CoronaVirus_Disease_2019_prevalence(0.03,0.9,0.8)
CoronaVirus_Disease_2019_prevalence(0.3,0.9,0.8)
#========================================================================================
# If Sensitivity and Specificity is larger, then, the probability is also larger
#========================================================================================
x <- stats::runif(1111,0,1)
y <- CoronaVirus_Disease_2019_prevalence(0.1,x,x)
dark_theme(4)
plot(x,y)
x <- stats::runif(1111,0,1)
y <- CoronaVirus_Disease_2019_prevalence(0.01,x,x)
dark_theme(4)
plot(x,y)
x <- stats::runif(1111,0,1)
y <- CoronaVirus_Disease_2019_prevalence(0.001,x,x)
dark_theme(4)
plot(x,y)
#========================================================================================
# linear case:
#
# If prevalence is 0.5
# and sensitivity = specificity
# then, the probability is exactly same as sensitivity = specificity
#
#========================================================================================
x <- stats::runif(1111,0,1)
y <- CoronaVirus_Disease_2019_prevalence(0.5,x,x)
dark_theme(4)
plot(x,y)
sum(x==y)==length(x)
# Because the last is true, the probablity is same as sensitivity
# when the prevalence is 0.5.
#========================================================================================
# If the prevalence is larger, then, the probability is also larger
#========================================================================================
x <- stats::runif(1111,0,1)
y <- CoronaVirus_Disease_2019_prevalence(x,0.9,0.9)
dark_theme(4)
plot(x,y)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.