Description Usage Arguments Details Value See Also Examples
View source: R/array_of_hit_and_false_alarms_from_vector.R
Return value is a three dimensional array of type [C,M,Q] representing the number of confidence levels and modalities and readers, respectively. This array includes the number of hit and the number of false alarms.
Revised 2019 Nov. 20
1 |
dataList |
A list, consisting of the following R objects:
The detail of these dataset, please see the example datasets, e.g. |
The author also implemented this
in the metadata_to_fit_MRMC which is an old version.
However, the old version uses "for" sentences,
and it is not so better.
On the other hand,
this function use
the function aperm()
and array() and they are better
than "for" sentence.
Revised 2019 Nov. 20 Revised 2019 Dec. 12
A list,
whose components are arrays of the number of hits h and
the number of false alarms f of dimension [c,M,Q].
Do not confuse [c,Q,M] or [M,Q,C], etc.
Revised 2019 Nov. 20
Chi_square_goodness_of_fit_in_case_of_MRMC_Posterior_Mean
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | #--------------------------------------------------------------------------------------
# Validation of program
#--------------------------------------------------------------------------------------
h1 <- array_of_hit_and_false_alarms_from_vector(dd)$harray
h2 <- metadata_to_fit_MRMC(dd)$harray
h1 == h2
f1 <- array_of_hit_and_false_alarms_from_vector(dd)$farray
f2 <- metadata_to_fit_MRMC(dd)$farray
f1 == f2
#--------------------------------------------------------------------------------------
# subtraction for ( hit - hit.expected)
#--------------------------------------------------------------------------------------
# In the chi square calculation,
# we need to subtract expected value of hit from hit rate,
# thus the author made this function.
## Not run:
# Prepare example data
dd <- BayesianFROC::dd
# Fit a model to data
fit <- fit_Bayesian_FROC( dataList = dd,
ite = 1111 )
# Extract a collection of expected hits as an array
harray.expected <- extract_EAP_by_array(fit,ppp)*dd$NL
# Prepare hit (TP) data as an array
harray <- array_of_hit_and_false_alarms_from_vector(dd)$harray
# Calculate the difference of hits and its expectation..
Difference <- harray - harray.expected
# The above calculation is required in the chi square goodness of fit
#======================================================================================
# array format hit and false
#======================================================================================
harray <- array_of_hit_and_false_alarms_from_vector(dataList = ddd)$harray
farray <- array_of_hit_and_false_alarms_from_vector(dataList = ddd)$farray
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.